文件名称:kmeans
介绍说明--下载内容均来自于网络,请自行研究使用
function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
-function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
-function [L,C] = kmeans(X,k)
KMEANS Cluster multivariate data using the k-means++ algorithm.
[L,C] = kmeans(X,k) produces a 1-by-size(X,2) vector L with one class
label per column in X and a size(X,1)-by-k matrix C containing the
centers corresponding to each class.
Version: 07/08/11
Authors: Laurent Sorber (Laurent.Sorber@cs.kuleuven.be)
References:
[1] J. B. MacQueen, "Some Methods for Classification and Analysis of
MultiVariate Observations", in Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, eds., vol. 1, UC Press, 1967, pp. 281-297.
[2] D. Arthur and S. Vassilvitskii, "k-means++: The Advantages of
Careful Seeding", Technical Report 2006-13, Stanford InfoLab, 2006.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kmeans.m