文件名称:LMS
介绍说明--下载内容均来自于网络,请自行研究使用
1,、设置变量和参量:
X(n)为输入向量,或称为训练样本
W(n)为权值向量
e(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行-, set the variables and parameters:
X (n) is the input vector, otherwise known as the training sample
W (n) for the weight vector
e (n) for the deviation
d (n) is the desired output
y (n) is the actual output
η is the learning rate
n is the number of iterations
X(n)为输入向量,或称为训练样本
W(n)为权值向量
e(n)为偏差
d(n)为期望输出
y(n)为实际输出
η为学习速率
n为迭代次数
2、初始化,赋给w(0)各一个较小的随机非零值,令n=0
3、对于一组输入样本x(n)和对应的期望输出d,计算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行-, set the variables and parameters:
X (n) is the input vector, otherwise known as the training sample
W (n) for the weight vector
e (n) for the deviation
d (n) is the desired output
y (n) is the actual output
η is the learning rate
n is the number of iterations
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LMS.m