文件名称:Machines-Based-on-DFS
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 253kb
- 下载次数:
- 0次
- 提 供 者:
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
深度优先搜索的支持向量机参数优化算法
Study on Parameters Optimization of Support
Vector Machines Based on DFS
:研究支持向量机参数优化问题,由于算法要求准确选择 SVM 参数,支持向量机在处理大样本数据集时和最优模型参
数确定时,消耗的时间长、占有内存大,易获得局部最优解的难题。为了解决支持向量机存在的不足,采用深度优先搜索算
法对其参数优化机机制进行改进。将向量机参数优化视成一个组合优化问题,将支持向量机模型的分类误差作为优化目标
函数,采用深度优先算法对其进行求解,最后将模型应用于 3 个标准分类数据集。仿真结果表明,优化参数后的支持向量机
加快模型的训练速度度,提高了分类的准确率,很好的解决- Study on the problems of support vector machines parameters optimization. The prediction precision of
Support vector machines model and generalization ability depend on its parameters reasonable choice. The problems of
time - consuming and easy falling into the local optimal value exist in traditional support vector machine parameters
optimization algorithm,and support vector machine prediction precision is low. In order to solve the problems,the
paper puts forward a method based on depth first search of SVM parameters optimization method ( DFS - SVM) . DFS
- SVM takes SVM parameters optimization as a combinatorial optimization problem and the RMSE as optimization
goal,uses depth first search to select SVM parameters,and tests DFS - SVM performaces through three standard data
set. Simulation experiment results show that the DFS - SVM prediction accuracy is improved and the training time is
shorten greatly. It provides a new effective solution for SVM parameters optimizat
Study on Parameters Optimization of Support
Vector Machines Based on DFS
:研究支持向量机参数优化问题,由于算法要求准确选择 SVM 参数,支持向量机在处理大样本数据集时和最优模型参
数确定时,消耗的时间长、占有内存大,易获得局部最优解的难题。为了解决支持向量机存在的不足,采用深度优先搜索算
法对其参数优化机机制进行改进。将向量机参数优化视成一个组合优化问题,将支持向量机模型的分类误差作为优化目标
函数,采用深度优先算法对其进行求解,最后将模型应用于 3 个标准分类数据集。仿真结果表明,优化参数后的支持向量机
加快模型的训练速度度,提高了分类的准确率,很好的解决- Study on the problems of support vector machines parameters optimization. The prediction precision of
Support vector machines model and generalization ability depend on its parameters reasonable choice. The problems of
time - consuming and easy falling into the local optimal value exist in traditional support vector machine parameters
optimization algorithm,and support vector machine prediction precision is low. In order to solve the problems,the
paper puts forward a method based on depth first search of SVM parameters optimization method ( DFS - SVM) . DFS
- SVM takes SVM parameters optimization as a combinatorial optimization problem and the RMSE as optimization
goal,uses depth first search to select SVM parameters,and tests DFS - SVM performaces through three standard data
set. Simulation experiment results show that the DFS - SVM prediction accuracy is improved and the training time is
shorten greatly. It provides a new effective solution for SVM parameters optimizat
(系统自动生成,下载前可以参看下载内容)
下载文件列表
深度优先搜索的支持向量机参数优化算法.pdf