文件名称:000
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 367kb
- 下载次数:
- 0次
- 提 供 者:
- 刘*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
支持向量机(svM)是一种新的机器学习技术。本文采用一对一方法构建多分类SVM
分类器。利用常用的灰度共生矩阵方法提取图像纹理特征,组成特征向量,输入构建好的SVM
多分类器中进行分类。对从Brodatz纹理库中选取的4张纹理图像进行了分类实验,取得较好的
分类结果-Support vector machine (svM) is a new machine learning techniques. In this paper, one way to build a multi-classification SVM classifier. GLCM using methods commonly used to extract image texture features, compositions of the vector input to build a good classifier in the SVM multi-classification. From the Brodatz texture library texture selected four images were classified experiments to obtain better classification results
分类器。利用常用的灰度共生矩阵方法提取图像纹理特征,组成特征向量,输入构建好的SVM
多分类器中进行分类。对从Brodatz纹理库中选取的4张纹理图像进行了分类实验,取得较好的
分类结果-Support vector machine (svM) is a new machine learning techniques. In this paper, one way to build a multi-classification SVM classifier. GLCM using methods commonly used to extract image texture features, compositions of the vector input to build a good classifier in the SVM multi-classification. From the Brodatz texture library texture selected four images were classified experiments to obtain better classification results
相关搜索: SVM
(系统自动生成,下载前可以参看下载内容)
下载文件列表
SVM在图像分类中的应用.pdf