文件名称:meanS3VM
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
means3vm算法,matlab 是实现半监督学习的较好的方法,能够对多种数据集进行测试,代码中包含例子,下载即可以使用-means3vm algorithm, matlab is better to achieve semi-supervised learning methods can be tested on a variety of data sets, the code contains examples that can be used to download
相关搜索: 半监督
(系统自动生成,下载前可以参看下载内容)
下载文件列表
meanS3VM\demo.m
........\digit1.mat
........\digit1_l10.mat
........\digit1_l100.mat
........\house.mat
........\libsvm-mat-2.83-1\COPYRIGHT
........\.................\heart_scale.mat
........\.................\make.m
........\.................\Makefile
........\.................\README
........\.................\read_sparse.c
........\.................\read_sparse.mexw32
........\.................\read_sparse.mexw64
........\.................\svm.cpp
........\.................\svm.h
........\.................\svmpredict.c
........\.................\svmpredict.mexw32
........\.................\svmpredict.mexw64
........\.................\svmtrain.c
........\.................\svmtrain.mexw32
........\.................\svmtrain.mexw64
........\.................\svm_model_matlab.c
........\.................\svm_model_matlab.h
........\........eans3vm\COPYRIGHT
........\...............\heart_scale.mat
........\...............\make.m
........\...............\Makefile
........\...............\README
........\...............\read_sparse.c
........\...............\read_sparse.dll
........\...............\read_sparse.ilk
........\...............\read_sparse.mexw32
........\...............\read_sparse.mexw64
........\...............\svm.cpp
........\...............\svm.h
........\...............\svm.obj
........\...............\svmpredict.c
........\...............\svmpredict.dll
........\...............\svmpredict.ilk
........\...............\svmpredict.mexw32
........\...............\svmpredict.mexw64
........\...............\svmtrain.c
........\...............\svmtrain.dll
........\...............\svmtrain.ilk
........\...............\svmtrain.mexw32
........\...............\svmtrain.mexw64
........\...............\svm_model_matlab.c
........\...............\svm_model_matlab.h
........\...............\svm_model_matlab.obj
........\means3vm_iter\means3vm_iter.m
........\.........mkl\means3vm_mkl.m
........\............\.kl\cal_kernel_set.m
........\............\...\costsvmclass_s3vm.m
........\............\...\gradsvmclass.m
........\............\...\mkl.m
........\............\...\mklsvmupdate_s3vm.m
........\............\...\mklsvm_s3vm.m
........\............\...\most_violated_y_new.m
........\............\...\prediction.m
........\............\...\sumKbeta.m
........\............\...\svmclass_s3vm.m
........\Semi-Supervised Learning Using Label Mean.PDF
........\Text.mat
........\Text_l10.mat
........\Text_l100.mat
........\USPS.mat
........\USPS_l10.mat
........\USPS_l100.mat
........\means3vm_mkl\mkl
........\libsvm-mat-2.83-1
........\libsvm-means3vm
........\means3vm_iter
........\means3vm_mkl
meanS3VM
........\digit1.mat
........\digit1_l10.mat
........\digit1_l100.mat
........\house.mat
........\libsvm-mat-2.83-1\COPYRIGHT
........\.................\heart_scale.mat
........\.................\make.m
........\.................\Makefile
........\.................\README
........\.................\read_sparse.c
........\.................\read_sparse.mexw32
........\.................\read_sparse.mexw64
........\.................\svm.cpp
........\.................\svm.h
........\.................\svmpredict.c
........\.................\svmpredict.mexw32
........\.................\svmpredict.mexw64
........\.................\svmtrain.c
........\.................\svmtrain.mexw32
........\.................\svmtrain.mexw64
........\.................\svm_model_matlab.c
........\.................\svm_model_matlab.h
........\........eans3vm\COPYRIGHT
........\...............\heart_scale.mat
........\...............\make.m
........\...............\Makefile
........\...............\README
........\...............\read_sparse.c
........\...............\read_sparse.dll
........\...............\read_sparse.ilk
........\...............\read_sparse.mexw32
........\...............\read_sparse.mexw64
........\...............\svm.cpp
........\...............\svm.h
........\...............\svm.obj
........\...............\svmpredict.c
........\...............\svmpredict.dll
........\...............\svmpredict.ilk
........\...............\svmpredict.mexw32
........\...............\svmpredict.mexw64
........\...............\svmtrain.c
........\...............\svmtrain.dll
........\...............\svmtrain.ilk
........\...............\svmtrain.mexw32
........\...............\svmtrain.mexw64
........\...............\svm_model_matlab.c
........\...............\svm_model_matlab.h
........\...............\svm_model_matlab.obj
........\means3vm_iter\means3vm_iter.m
........\.........mkl\means3vm_mkl.m
........\............\.kl\cal_kernel_set.m
........\............\...\costsvmclass_s3vm.m
........\............\...\gradsvmclass.m
........\............\...\mkl.m
........\............\...\mklsvmupdate_s3vm.m
........\............\...\mklsvm_s3vm.m
........\............\...\most_violated_y_new.m
........\............\...\prediction.m
........\............\...\sumKbeta.m
........\............\...\svmclass_s3vm.m
........\Semi-Supervised Learning Using Label Mean.PDF
........\Text.mat
........\Text_l10.mat
........\Text_l100.mat
........\USPS.mat
........\USPS_l10.mat
........\USPS_l100.mat
........\means3vm_mkl\mkl
........\libsvm-mat-2.83-1
........\libsvm-means3vm
........\means3vm_iter
........\means3vm_mkl
meanS3VM