文件名称:Adaptiveconstrainedparticleswarm
介绍说明--下载内容均来自于网络,请自行研究使用
针对粒子群优化算法应用于约束优化问题时易陷入局部极小值的问题, 提出了一种改进的粒子群优化算
法. 该算法综合了约束优化问题的目标函数值和约束函数的违反度值作为粒子群优化算法的双适应度值, 采用了
双适应值动态判断粒子群优化算法中粒子的优劣. 违反度值的计算引入了自适应加权系数, 相应地提出了调整各
权系数的自适应策略, 并改进了粒子群优化算法的粒子竞争选择策略, 拓展了粒子群优化算法的单适应值的应用
范围.应用约束自适应粒子群优化算法实现了城市水厂的节能优化调度. 结果表明, 该算法收敛速度快且结果可
靠. 粒子群优化算法为解决工程约束优化问题提供了一条可行途径-Considering that theparticleswarmoptimization( PSO) algorithmcanbeeasily trappedinto the
local minimal valueinconstrainedoptimizationproblems, amodifiedconstrainedparticleswarmoptimiza
tionalgorithmwasproposed. Theobjective functionvalue andthe violationvalue of constraint functions
wereeffectively combinedto formtwofitnesses, andthefitnesseswereadoptedto estimate if theparticle
wassuperior or not ina dynamicway. Theadaptiveweight functionwasadoptedinthe calculationof the
violationvalue. The strategy of keeping anadaptive relationof weight coefficientswasproposed, andthe
strategyof swarmtournament selectionwasimproved. Theapplicationlocalizationsof thesinglefitnessof
PSOwerewidenedaswell. ThemodifiedconstrainedPSOalgorithmwasappliedtosolveenergyoptimiza
tionproblemsof theurbanwater supplyprocess, whichshowedthat theconvergent speedof thealgorithm
isfast andthe result isvalid. Afeasibleapproachto solvetheindustrial constraint optimizationproblems
withPSOwasprovided.
法. 该算法综合了约束优化问题的目标函数值和约束函数的违反度值作为粒子群优化算法的双适应度值, 采用了
双适应值动态判断粒子群优化算法中粒子的优劣. 违反度值的计算引入了自适应加权系数, 相应地提出了调整各
权系数的自适应策略, 并改进了粒子群优化算法的粒子竞争选择策略, 拓展了粒子群优化算法的单适应值的应用
范围.应用约束自适应粒子群优化算法实现了城市水厂的节能优化调度. 结果表明, 该算法收敛速度快且结果可
靠. 粒子群优化算法为解决工程约束优化问题提供了一条可行途径-Considering that theparticleswarmoptimization( PSO) algorithmcanbeeasily trappedinto the
local minimal valueinconstrainedoptimizationproblems, amodifiedconstrainedparticleswarmoptimiza
tionalgorithmwasproposed. Theobjective functionvalue andthe violationvalue of constraint functions
wereeffectively combinedto formtwofitnesses, andthefitnesseswereadoptedto estimate if theparticle
wassuperior or not ina dynamicway. Theadaptiveweight functionwasadoptedinthe calculationof the
violationvalue. The strategy of keeping anadaptive relationof weight coefficientswasproposed, andthe
strategyof swarmtournament selectionwasimproved. Theapplicationlocalizationsof thesinglefitnessof
PSOwerewidenedaswell. ThemodifiedconstrainedPSOalgorithmwasappliedtosolveenergyoptimiza
tionproblemsof theurbanwater supplyprocess, whichshowedthat theconvergent speedof thealgorithm
isfast andthe result isvalid. Afeasibleapproachto solvetheindustrial constraint optimizationproblems
withPSOwasprovided.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Adaptiveconstrainedparticleswarm.pdf