文件名称:the-wavelet-neural-network
介绍说明--下载内容均来自于网络,请自行研究使用
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经
网络的交通预测模型GA-WNN ,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA-WNN 预测模型对短时交通流的预测的有效性.-For the high complexity ,time-variation and probability of urban traffic flow , its real-time and exact
prediction is critical to the research of intelligent traffic systems , especially for the advanced traffic manage-ment system and advanced traveler information system. Based on the character of the traffic flow prediction , a
GA-WNN model is given based on the wavelet neural network with genetic algorithm. The genetic algorithm of
natural evolving law for the gradient descendent algorithm in Wavelet Neural Network is partly substituted to
pre-optimize the connection weight and the extension scale of the wavelet neural network and later optimize the
parameters along a single gradient vector. This method overcomes some drawbacks when there exists a single
gradient descendent algorithm , such as local minimum and oscillation. A short-time traffic flow prediction sim-
ulation using the GA2WNN prediction model demonstrates the validity of the model .
网络的交通预测模型GA-WNN ,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA-WNN 预测模型对短时交通流的预测的有效性.-For the high complexity ,time-variation and probability of urban traffic flow , its real-time and exact
prediction is critical to the research of intelligent traffic systems , especially for the advanced traffic manage-ment system and advanced traveler information system. Based on the character of the traffic flow prediction , a
GA-WNN model is given based on the wavelet neural network with genetic algorithm. The genetic algorithm of
natural evolving law for the gradient descendent algorithm in Wavelet Neural Network is partly substituted to
pre-optimize the connection weight and the extension scale of the wavelet neural network and later optimize the
parameters along a single gradient vector. This method overcomes some drawbacks when there exists a single
gradient descendent algorithm , such as local minimum and oscillation. A short-time traffic flow prediction sim-
ulation using the GA2WNN prediction model demonstrates the validity of the model .
(系统自动生成,下载前可以参看下载内容)
下载文件列表
发表论文与程序\d_mymorlet.m
..............\ga_wavenn_bp.asv
..............\ga_wavenn_bp.m
..............\mymorlet.m
..............\objfun.m
..............\objfun_1.m
..............\stock_index.mat
..............\基于遗传算法的小波神经网络在股票预测中的应用(删减 无错版).pdf
发表论文与程序
基于遗传算法的小波神经网络在股票预测中的应用.pdf
..............\ga_wavenn_bp.asv
..............\ga_wavenn_bp.m
..............\mymorlet.m
..............\objfun.m
..............\objfun_1.m
..............\stock_index.mat
..............\基于遗传算法的小波神经网络在股票预测中的应用(删减 无错版).pdf
发表论文与程序
基于遗传算法的小波神经网络在股票预测中的应用.pdf