文件名称:beibao
- 所属分类:
- 汇编语言
- 资源属性:
- [C/C++] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 1kb
- 下载次数:
- 0次
- 提 供 者:
- zheng*****
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:
(1,4,3,2)
(1,4,5)
(8,2)
(3,5,2)。
-Suppose there are a load of the backpack of the total volume of T and n volumes were w1, w2, ... wn items, whether selected from n items a number of exactly filled backpack, even if w1+ w2+ ...+wn = T, find out the solution of all the above conditions are met. For example: when T = 10, the volume of items {1,8,4,3,5,2}, can be found in the following solution:
(1,4,3,2)
(1,4,5)
(8,2)
(3,5,2).
(1,4,3,2)
(1,4,5)
(8,2)
(3,5,2)。
-Suppose there are a load of the backpack of the total volume of T and n volumes were w1, w2, ... wn items, whether selected from n items a number of exactly filled backpack, even if w1+ w2+ ...+wn = T, find out the solution of all the above conditions are met. For example: when T = 10, the volume of items {1,8,4,3,5,2}, can be found in the following solution:
(1,4,3,2)
(1,4,5)
(8,2)
(3,5,2).
(系统自动生成,下载前可以参看下载内容)
下载文件列表
背包问题求解.cpp