文件名称:myBackPropagation
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Windows] [Visual.Net] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 49kb
- 下载次数:
- 0次
- 提 供 者:
- Pu***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
The principle of back propagation is actually quite easy to understand, even though the maths behind it can look rather daunting. The basic steps are:
Initialise the network with small random weights.
Present an input pattern to the input layer of the network.
Feed the input pattern forward through the network to calculate its activation value.
Take the difference between desired output and the activation value to calculate the network’s activation error.
Adjust the weights feeding the output neuron to reduce its activation error for this input pattern.
Propagate an error value back to each hidden neuron that is proportional to their contribution of the network’s activation error.
Adjust the weights feeding each hidden neuron to reduce their contribution of error for this input pattern.
Repeat steps 2 to 7 for each input pattern in the input collection.
Repeat step 8 until the network is suitably trained.-The principle of back propagation is actually quite easy to understand, even though the maths behind it can look rather daunting. The basic steps are:
Initialise the network with small random weights.
Present an input pattern to the input layer of the network.
Feed the input pattern forward through the network to calculate its activation value.
Take the difference between desired output and the activation value to calculate the network’s activation error.
Adjust the weights feeding the output neuron to reduce its activation error for this input pattern.
Propagate an error value back to each hidden neuron that is proportional to their contribution of the network’s activation error.
Adjust the weights feeding each hidden neuron to reduce their contribution of error for this input pattern.
Repeat steps 2 to 7 for each input pattern in the input collection.
Repeat step 8 until the network is suitably trained.
Initialise the network with small random weights.
Present an input pattern to the input layer of the network.
Feed the input pattern forward through the network to calculate its activation value.
Take the difference between desired output and the activation value to calculate the network’s activation error.
Adjust the weights feeding the output neuron to reduce its activation error for this input pattern.
Propagate an error value back to each hidden neuron that is proportional to their contribution of the network’s activation error.
Adjust the weights feeding each hidden neuron to reduce their contribution of error for this input pattern.
Repeat steps 2 to 7 for each input pattern in the input collection.
Repeat step 8 until the network is suitably trained.-The principle of back propagation is actually quite easy to understand, even though the maths behind it can look rather daunting. The basic steps are:
Initialise the network with small random weights.
Present an input pattern to the input layer of the network.
Feed the input pattern forward through the network to calculate its activation value.
Take the difference between desired output and the activation value to calculate the network’s activation error.
Adjust the weights feeding the output neuron to reduce its activation error for this input pattern.
Propagate an error value back to each hidden neuron that is proportional to their contribution of the network’s activation error.
Adjust the weights feeding each hidden neuron to reduce their contribution of error for this input pattern.
Repeat steps 2 to 7 for each input pattern in the input collection.
Repeat step 8 until the network is suitably trained.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
myBackPropagation\myBackPropagation.sln
.................\myBackPropagation.suo
.................\myBackPropagation
.................\.................\BACKPROPAGATION.cs
.................\.................\bin
.................\.................\...\Debug
.................\.................\...\.....\myBackPropagation.exe
.................\.................\...\.....\myBackPropagation.pdb
.................\.................\...\.....\myBackPropagation.vshost.exe
.................\.................\...\.....\myBackPropagation.vshost.exe.manifest
.................\.................\...\.....\Patterns.csv
.................\.................\...\.....\Patterns1.csv
.................\.................\...\.....\Patterns2.csv
.................\.................\ClassDiagram1.cd
.................\.................\GRADIENTDESCENT.cs
.................\.................\Layer.cs
.................\.................\myBackPropagation.csproj
.................\.................\Network.cs
.................\.................\NeuralNetwork.cs
.................\.................\Neuron.cs
.................\.................\obj
.................\.................\...\x86
.................\.................\...\...\Debug
.................\.................\...\...\.....\DesignTimeResolveAssemblyReferencesInput.cache
.................\.................\...\...\.....\myBackPropagation.csproj.FileListAbsolute.txt
.................\.................\...\...\.....\myBackPropagation.exe
.................\.................\...\...\.....\myBackPropagation.pdb
.................\.................\...\...\.....\ResolveAssemblyReference.cache
.................\.................\...\...\.....\TempPE
.................\.................\Program.cs
.................\.................\Properties
.................\.................\..........\AssemblyInfo.cs
.................\.................\trainningExamples.cs
.................\.................\Weight.cs
.................\myBackPropagation.suo
.................\myBackPropagation
.................\.................\BACKPROPAGATION.cs
.................\.................\bin
.................\.................\...\Debug
.................\.................\...\.....\myBackPropagation.exe
.................\.................\...\.....\myBackPropagation.pdb
.................\.................\...\.....\myBackPropagation.vshost.exe
.................\.................\...\.....\myBackPropagation.vshost.exe.manifest
.................\.................\...\.....\Patterns.csv
.................\.................\...\.....\Patterns1.csv
.................\.................\...\.....\Patterns2.csv
.................\.................\ClassDiagram1.cd
.................\.................\GRADIENTDESCENT.cs
.................\.................\Layer.cs
.................\.................\myBackPropagation.csproj
.................\.................\Network.cs
.................\.................\NeuralNetwork.cs
.................\.................\Neuron.cs
.................\.................\obj
.................\.................\...\x86
.................\.................\...\...\Debug
.................\.................\...\...\.....\DesignTimeResolveAssemblyReferencesInput.cache
.................\.................\...\...\.....\myBackPropagation.csproj.FileListAbsolute.txt
.................\.................\...\...\.....\myBackPropagation.exe
.................\.................\...\...\.....\myBackPropagation.pdb
.................\.................\...\...\.....\ResolveAssemblyReference.cache
.................\.................\...\...\.....\TempPE
.................\.................\Program.cs
.................\.................\Properties
.................\.................\..........\AssemblyInfo.cs
.................\.................\trainningExamples.cs
.................\.................\Weight.cs