文件名称:Matlab
介绍说明--下载内容均来自于网络,请自行研究使用
matlab程序非线性优化设计方法时下流行的关于非线性规划的源程序,包括SQP方法、乘子法程序、二次规划、非线性最小二乘法、共轭梯度法、拟牛顿法、线搜索技术、信赖域方法、最速下降法与牛顿法等-matlab program nonlinear optimization design method popular on nonlinear programming source code, including the SQP method, the multiplier method procedures, quadratic programming, nonlinear least squares method, the conjugate gradient method, quasi-Newton method, the linesearch technology, trust region methods, the steepest descent method and Newton method
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Matlab程序\dfun1.m
..........\dgfun1.m
..........\dhfun.m
..........\dpfun.m
..........\ff.m
..........\fun.m
..........\fun1.m
..........\gfun.m
..........\gfun1.m
..........\gg.m
..........\gradd.m
..........\Hess.m
..........\hfun.m
..........\phi.m
..........\SQP方法\lagsqp.asv
..........\.......\lagsqp.m
..........\.......\newtlagr.asv
..........\.......\newtlagr.m
..........\.......\qpsubp.asv
..........\.......\qpsubp.m
..........\.......\sqpm.asv
..........\.......\sqpm.m
..........\乘子法程序\bfgs.m
..........\..........\df1.m
..........\..........\dg1.m
..........\..........\dh1.m
..........\..........\dmpsi.m
..........\..........\f1.m
..........\..........\g1.m
..........\..........\h1.m
..........\..........\mpsi.m
..........\..........\multphr.m
..........\二次规划\callqpact.m
..........\........\qlag.asv
..........\........\qlag.m
..........\........\qpact.asv
..........\........\qpact.m
..........\信赖域方法\fun.m
..........\..........\gfun.m
..........\..........\Hess.m
..........\..........\trustm.m
..........\..........\trustq.m
..........\共轭梯度法\frcg.m
..........\..........\fun.m
..........\..........\gfun.m
..........\拟牛顿法\bfgs.m
..........\........\broyden.m
..........\........\dfp.m
..........\........\fun.m
..........\........\gfun.m
..........\........\sr1.m
..........\最速下降法与牛顿法\dampnm.m
..........\..................\fun.m
..........\..................\gfun.m
..........\..................\grad.m
..........\..................\Hess.m
..........\..................\revisenm.m
..........\线搜索技术\armijo.m
..........\..........\golds.m
..........\..........\qmin.m
..........\非线性最小二乘问题\Fk.m
..........\..................\JFk.m
..........\..................\lmm.m
..........\SQP方法
..........\乘子法程序
..........\二次规划
..........\信赖域方法
..........\共轭梯度法
..........\拟牛顿法
..........\最速下降法与牛顿法
..........\线搜索技术
..........\非线性最小二乘问题
Matlab程序
..........\dgfun1.m
..........\dhfun.m
..........\dpfun.m
..........\ff.m
..........\fun.m
..........\fun1.m
..........\gfun.m
..........\gfun1.m
..........\gg.m
..........\gradd.m
..........\Hess.m
..........\hfun.m
..........\phi.m
..........\SQP方法\lagsqp.asv
..........\.......\lagsqp.m
..........\.......\newtlagr.asv
..........\.......\newtlagr.m
..........\.......\qpsubp.asv
..........\.......\qpsubp.m
..........\.......\sqpm.asv
..........\.......\sqpm.m
..........\乘子法程序\bfgs.m
..........\..........\df1.m
..........\..........\dg1.m
..........\..........\dh1.m
..........\..........\dmpsi.m
..........\..........\f1.m
..........\..........\g1.m
..........\..........\h1.m
..........\..........\mpsi.m
..........\..........\multphr.m
..........\二次规划\callqpact.m
..........\........\qlag.asv
..........\........\qlag.m
..........\........\qpact.asv
..........\........\qpact.m
..........\信赖域方法\fun.m
..........\..........\gfun.m
..........\..........\Hess.m
..........\..........\trustm.m
..........\..........\trustq.m
..........\共轭梯度法\frcg.m
..........\..........\fun.m
..........\..........\gfun.m
..........\拟牛顿法\bfgs.m
..........\........\broyden.m
..........\........\dfp.m
..........\........\fun.m
..........\........\gfun.m
..........\........\sr1.m
..........\最速下降法与牛顿法\dampnm.m
..........\..................\fun.m
..........\..................\gfun.m
..........\..................\grad.m
..........\..................\Hess.m
..........\..................\revisenm.m
..........\线搜索技术\armijo.m
..........\..........\golds.m
..........\..........\qmin.m
..........\非线性最小二乘问题\Fk.m
..........\..................\JFk.m
..........\..................\lmm.m
..........\SQP方法
..........\乘子法程序
..........\二次规划
..........\信赖域方法
..........\共轭梯度法
..........\拟牛顿法
..........\最速下降法与牛顿法
..........\线搜索技术
..........\非线性最小二乘问题
Matlab程序