文件名称:HankelTransform
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
Matlab Hankel变换源代码,可以直接当做MATLAB toolbox来使用-
MATLAB toolbox
________________________________________________________
Hankel transform
________________________________________________________
** Contents
1. Introduction
2. Requirements
3. Implementation details
4. References
5. Copyright
6. Warranty
7. History
8. Download
9. Trademarks
** Publisher
Marcel Leutenegger marcel.leutenegger@epfl.ch
EPFL STI IOA LOB
BM 4.143 Tel: +41 21 693 77 19
Station 17
CH-1015 Lausanne
1. Introduction
The Hankel transform of order n transforms rotationally symetric inputs in a
computationally efficient manner. In particular, the Hankel transform of order
0 is equivalent to the two-dimensional Fourier transform of a rotationally
symetric input. This package contains four implementations of the Hankel
transform and the inverse Hankel transform, respectively.
2. Requirements
?MATLAB 6.0 or newer.
3. Implementation details
The package ships fou
MATLAB toolbox
________________________________________________________
Hankel transform
________________________________________________________
** Contents
1. Introduction
2. Requirements
3. Implementation details
4. References
5. Copyright
6. Warranty
7. History
8. Download
9. Trademarks
** Publisher
Marcel Leutenegger marcel.leutenegger@epfl.ch
EPFL STI IOA LOB
BM 4.143 Tel: +41 21 693 77 19
Station 17
CH-1015 Lausanne
1. Introduction
The Hankel transform of order n transforms rotationally symetric inputs in a
computationally efficient manner. In particular, the Hankel transform of order
0 is equivalent to the two-dimensional Fourier transform of a rotationally
symetric input. This package contains four implementations of the Hankel
transform and the inverse Hankel transform, respectively.
2. Requirements
?MATLAB 6.0 or newer.
3. Implementation details
The package ships fou
(系统自动生成,下载前可以参看下载内容)
下载文件列表
private\frdr.m
.......\JnRoots.m
private
dht.m
dht.mat
fht.m
hat.m
ht.m
idht.m
ifht.m
ihat.m
iht.m
Readme.txt
.......\JnRoots.m
private
dht.m
dht.mat
fht.m
hat.m
ht.m
idht.m
ifht.m
ihat.m
iht.m
Readme.txt