文件名称:shuxuejianmo
介绍说明--下载内容均来自于网络,请自行研究使用
matlab 数学建模常用的编程代码 数值计算 微分方程 随机数生成 函数计算-matlab programming code commonly used in mathematical modeling of differential equations numerical calculation of the random number generating function, etc.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
源程序代码\MATLAB语言常用算法程序集\第10章 非线性方程组求解\DiffParam1.m
..........\........................\........................\DiffParam2.m
..........\........................\........................\mulBFS.m
..........\........................\........................\mulConj.m
..........\........................\........................\mulDamp.m
..........\........................\........................\mulDFP.m
..........\........................\........................\mulDiscNewton.m
..........\........................\........................\mulDNewton.m
..........\........................\........................\mulFastDown.m
..........\........................\........................\mulGSND.m
..........\........................\........................\mulGXF1.m
..........\........................\........................\mulGXF2.m
..........\........................\........................\mulMix.m
..........\........................\........................\mulNewton.m
..........\........................\........................\mulNewtonSOR.m
..........\........................\........................\mulNewtonStev.m
..........\........................\........................\mulNumYT.m
..........\........................\........................\mulRank1.m
..........\........................\........................\mulSimNewton.m
..........\........................\........................\mulStablePoint.m
..........\........................\........................\mulVNewton.m
..........\........................\........................\SOR.m
..........\........................\...1章 解线性方程组的直接法\conjgrad.m
..........\........................\............................\Crout.m
..........\........................\............................\Doolittle.m
..........\........................\............................\followup.m
..........\........................\............................\GaussJordanXQ.m
..........\........................\............................\GaussXQAllMain.m
..........\........................\............................\GaussXQByOrder.m
..........\........................\............................\GaussXQLineMain.m
..........\........................\............................\InvAddSide.m
..........\........................\............................\qrxq.m
..........\........................\............................\SymPos1.m
..........\........................\............................\SymPos2.m
..........\........................\............................\SymPos3.m
..........\........................\............................\Yesf.m
..........\........................\...2章 解线性方程组的迭代法\BGS.m
..........\........................\............................\BJ.m
..........\........................\............................\BSOR.m
..........\........................\............................\conjgrad.m
..........\........................\............................\crs.m
..........\........................\............................\fastdown.m
..........\........................\............................\gauseidel.m
..........\........................\............................\grs.m
..........\........................\............................\jacobi.m
..........\........................\............................\JOR.m
..........\........................\............................\preconjgrad.m
..........\........................\............................\richason.m
..........\........................\............................\rs.m
..........\........................\............................\SOR.m
..........\........................\............................\SSOR.m
..........\........................\............................\twostep.m
..........\........................\...3章 随机数生成\AELDist.m
..........\........................\..................\BenuliDist.m
..........\........................\..................\BGDist.m
..........\........................\..........
..........\........................\........................\DiffParam2.m
..........\........................\........................\mulBFS.m
..........\........................\........................\mulConj.m
..........\........................\........................\mulDamp.m
..........\........................\........................\mulDFP.m
..........\........................\........................\mulDiscNewton.m
..........\........................\........................\mulDNewton.m
..........\........................\........................\mulFastDown.m
..........\........................\........................\mulGSND.m
..........\........................\........................\mulGXF1.m
..........\........................\........................\mulGXF2.m
..........\........................\........................\mulMix.m
..........\........................\........................\mulNewton.m
..........\........................\........................\mulNewtonSOR.m
..........\........................\........................\mulNewtonStev.m
..........\........................\........................\mulNumYT.m
..........\........................\........................\mulRank1.m
..........\........................\........................\mulSimNewton.m
..........\........................\........................\mulStablePoint.m
..........\........................\........................\mulVNewton.m
..........\........................\........................\SOR.m
..........\........................\...1章 解线性方程组的直接法\conjgrad.m
..........\........................\............................\Crout.m
..........\........................\............................\Doolittle.m
..........\........................\............................\followup.m
..........\........................\............................\GaussJordanXQ.m
..........\........................\............................\GaussXQAllMain.m
..........\........................\............................\GaussXQByOrder.m
..........\........................\............................\GaussXQLineMain.m
..........\........................\............................\InvAddSide.m
..........\........................\............................\qrxq.m
..........\........................\............................\SymPos1.m
..........\........................\............................\SymPos2.m
..........\........................\............................\SymPos3.m
..........\........................\............................\Yesf.m
..........\........................\...2章 解线性方程组的迭代法\BGS.m
..........\........................\............................\BJ.m
..........\........................\............................\BSOR.m
..........\........................\............................\conjgrad.m
..........\........................\............................\crs.m
..........\........................\............................\fastdown.m
..........\........................\............................\gauseidel.m
..........\........................\............................\grs.m
..........\........................\............................\jacobi.m
..........\........................\............................\JOR.m
..........\........................\............................\preconjgrad.m
..........\........................\............................\richason.m
..........\........................\............................\rs.m
..........\........................\............................\SOR.m
..........\........................\............................\SSOR.m
..........\........................\............................\twostep.m
..........\........................\...3章 随机数生成\AELDist.m
..........\........................\..................\BenuliDist.m
..........\........................\..................\BGDist.m
..........\........................\..........