文件名称:signal1
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
1、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2、 熟悉离散信号和系统的时域特性。
3、 熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、 掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响
应进行频域分析。 -1, familiar with the nature of the ideal sampling to understand the spectrum of the signal changes before and after sampling to enhance the understanding of the sampling theorem. 2, familiar with the discrete signals and systems in time domain. 3, familiar with the programming method linear convolution calculation: Using the convolution method, observation, analysis of system response in time domain. 4, the master sequence of computer realization of Fourier transform method, the use of Fourier transform of the sequence of discrete signals, systems and system response to frequency domain.
2、 熟悉离散信号和系统的时域特性。
3、 熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、 掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响
应进行频域分析。 -1, familiar with the nature of the ideal sampling to understand the spectrum of the signal changes before and after sampling to enhance the understanding of the sampling theorem. 2, familiar with the discrete signals and systems in time domain. 3, familiar with the programming method linear convolution calculation: Using the convolution method, observation, analysis of system response in time domain. 4, the master sequence of computer realization of Fourier transform method, the use of Fourier transform of the sequence of discrete signals, systems and system response to frequency domain.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
exp1\1.fig
....\1.jpg
....\2.jpg
....\3.jpg
....\4.jpg
....\5.jpg
....\6.jpg
....\7.jpg
....\convxbxd.m
....\convxcxc.asv
....\convxcxc.m
....\evenodd.m
....\exp01main.m
....\foriner.m
....\joxl.asv
....\joxl.m
....\q601.m
....\sighn.m
....\sigxa.asv
....\sigxa.m
....\sigxb.m
....\sigxc.asv
....\sigxc.m
....\sigxd.m
....\stepseq.m
exp1
....\1.jpg
....\2.jpg
....\3.jpg
....\4.jpg
....\5.jpg
....\6.jpg
....\7.jpg
....\convxbxd.m
....\convxcxc.asv
....\convxcxc.m
....\evenodd.m
....\exp01main.m
....\foriner.m
....\joxl.asv
....\joxl.m
....\q601.m
....\sighn.m
....\sigxa.asv
....\sigxa.m
....\sigxb.m
....\sigxc.asv
....\sigxc.m
....\sigxd.m
....\stepseq.m
exp1