文件名称:information-fusion-algorithm
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
本文利用模糊理论中的高斯隶属
度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可
信度转化成基本概率赋值函数即mass 函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获
得的结果比直接结果具有更高的精度和可靠性。-The method uses fuzzy theory in the Gaussian
fuzzy membership function to obtain a probable characteristic under observation likelihood function,and the resulting likelihood
function gets the credibility of the information provided by the sensors.Then the reliability of each sensor is changed
to a mass function.Finally,multi-sensor information is combined by using evidence theory.Simulation of target recognition
shows that the results obtained have higher accuracy and reliability.
度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可
信度转化成基本概率赋值函数即mass 函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获
得的结果比直接结果具有更高的精度和可靠性。-The method uses fuzzy theory in the Gaussian
fuzzy membership function to obtain a probable characteristic under observation likelihood function,and the resulting likelihood
function gets the credibility of the information provided by the sensors.Then the reliability of each sensor is changed
to a mass function.Finally,multi-sensor information is combined by using evidence theory.Simulation of target recognition
shows that the results obtained have higher accuracy and reliability.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
利用模糊推理的证据理论信息融合算法.pdf