文件名称:fit_ML_laplace
- 所属分类:
- matlab例程
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 1kb
- 下载次数:
- 0次
- 提 供 者:
- resid*****
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
(系统自动生成,下载前可以参看下载内容)
下载文件列表
fit_ML_laplace.m