文件名称:MATLAB-algorithm
介绍说明--下载内容均来自于网络,请自行研究使用
插值
函数逼近
数值微分
数值积分
非线性方程求解
解线性方程组的直接解法
解线性方程组的迭代法
随机数生成
特殊函数计算
常微分方程的初值问题
偏微分方程的数值解法
数据统计和分析-Interpolation function approximation numerical integration of nonlinear differential equations numerical solution of linear equations to solve the direct method of solving linear equations of the iteration calculation of special functions, random number generator initial value problems for ordinary differential equations numerical solution of partial differential equations Statistics and analysis
函数逼近
数值微分
数值积分
非线性方程求解
解线性方程组的直接解法
解线性方程组的迭代法
随机数生成
特殊函数计算
常微分方程的初值问题
偏微分方程的数值解法
数据统计和分析-Interpolation function approximation numerical integration of nonlinear differential equations numerical solution of linear equations to solve the direct method of solving linear equations of the iteration calculation of special functions, random number generator initial value problems for ordinary differential equations numerical solution of partial differential equations Statistics and analysis
(系统自动生成,下载前可以参看下载内容)
下载文件列表
《MATLAB语言常用算法程序集》一书的源程序\光盘使用说明.doc
........................................\光盘的算法程序索引.xls
........................................\第10章 非线性方程组求解\DiffParam1.m
........................................\........................\DiffParam2.m
........................................\........................\mulBFS.m
........................................\........................\mulConj.m
........................................\........................\mulDamp.m
........................................\........................\mulDFP.m
........................................\........................\mulDiscNewton.m
........................................\........................\mulDNewton.m
........................................\........................\mulFastDown.m
........................................\........................\mulGSND.m
........................................\........................\mulGXF1.m
........................................\........................\mulGXF2.m
........................................\........................\mulMix.m
........................................\........................\mulNewton.m
........................................\........................\mulNewtonSOR.m
........................................\........................\mulNewtonStev.m
........................................\........................\mulNumYT.m
........................................\........................\mulRank1.m
........................................\........................\mulSimNewton.m
........................................\........................\mulStablePoint.m
........................................\........................\mulVNewton.m
........................................\........................\SOR.m
........................................\...1章 解线性方程组的直接法\conjgrad.m
........................................\............................\Crout.m
........................................\............................\Doolittle.m
........................................\............................\followup.m
........................................\............................\GaussJordanXQ.m
........................................\............................\GaussXQAllMain.m
........................................\............................\GaussXQByOrder.m
........................................\............................\GaussXQLineMain.m
........................................\............................\InvAddSide.m
........................................\............................\qrxq.m
........................................\............................\SymPos1.m
........................................\............................\SymPos2.m
........................................\............................\SymPos3.m
........................................\............................\Yesf.m
........................................\...2章 解线性方程组的迭代法\BGS.m
........................................\............................\BJ.m
........................................\............................\BSOR.m
........................................\............................\conjgrad.m
........................................\............................\crs.m
........................................\............................\fastdown.m
........................................\............................\gauseidel.m
........................................\............................\grs.m
........................................\............................\jacobi.m
........................................\............................\JOR.m
........................................\............................\preconjgrad.m
........................................\............................\richason.m
........................................\............................\rs.m
........................................\............................\SOR.m
..................
........................................\光盘的算法程序索引.xls
........................................\第10章 非线性方程组求解\DiffParam1.m
........................................\........................\DiffParam2.m
........................................\........................\mulBFS.m
........................................\........................\mulConj.m
........................................\........................\mulDamp.m
........................................\........................\mulDFP.m
........................................\........................\mulDiscNewton.m
........................................\........................\mulDNewton.m
........................................\........................\mulFastDown.m
........................................\........................\mulGSND.m
........................................\........................\mulGXF1.m
........................................\........................\mulGXF2.m
........................................\........................\mulMix.m
........................................\........................\mulNewton.m
........................................\........................\mulNewtonSOR.m
........................................\........................\mulNewtonStev.m
........................................\........................\mulNumYT.m
........................................\........................\mulRank1.m
........................................\........................\mulSimNewton.m
........................................\........................\mulStablePoint.m
........................................\........................\mulVNewton.m
........................................\........................\SOR.m
........................................\...1章 解线性方程组的直接法\conjgrad.m
........................................\............................\Crout.m
........................................\............................\Doolittle.m
........................................\............................\followup.m
........................................\............................\GaussJordanXQ.m
........................................\............................\GaussXQAllMain.m
........................................\............................\GaussXQByOrder.m
........................................\............................\GaussXQLineMain.m
........................................\............................\InvAddSide.m
........................................\............................\qrxq.m
........................................\............................\SymPos1.m
........................................\............................\SymPos2.m
........................................\............................\SymPos3.m
........................................\............................\Yesf.m
........................................\...2章 解线性方程组的迭代法\BGS.m
........................................\............................\BJ.m
........................................\............................\BSOR.m
........................................\............................\conjgrad.m
........................................\............................\crs.m
........................................\............................\fastdown.m
........................................\............................\gauseidel.m
........................................\............................\grs.m
........................................\............................\jacobi.m
........................................\............................\JOR.m
........................................\............................\preconjgrad.m
........................................\............................\richason.m
........................................\............................\rs.m
........................................\............................\SOR.m
..................