文件名称:Particle-algorithm
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [WORD]
- 上传时间:
- 2012-11-26
- 文件大小:
- 10kb
- 下载次数:
- 0次
- 提 供 者:
- 天*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。
PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
-Particle swarm optimization (PSO) is an evolutionary computing (evolutionary computation), there is invented by Dr. Eberhart and Dr. kennedy. From the behavior of birds of prey. PSO with genetic algorithm is similar to an iteration-based optimization tool. System is initialized to a group of random solutions, the optimal value by iterative search. But there is no genetic algorithm with the cross (crossover) and mutation (mutation). But the particles in the solution space to follow the optimal particle search. Comparison with genetic algorithms, PSO has the advantage of simple and easy to implement and there is no need to adjust many parameters. Has been widely used in function optimization, neural network training, fuzzy system control, and other genetic algorithm applications.
PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
-Particle swarm optimization (PSO) is an evolutionary computing (evolutionary computation), there is invented by Dr. Eberhart and Dr. kennedy. From the behavior of birds of prey. PSO with genetic algorithm is similar to an iteration-based optimization tool. System is initialized to a group of random solutions, the optimal value by iterative search. But there is no genetic algorithm with the cross (crossover) and mutation (mutation). But the particles in the solution space to follow the optimal particle search. Comparison with genetic algorithms, PSO has the advantage of simple and easy to implement and there is no need to adjust many parameters. Has been widely used in function optimization, neural network training, fuzzy system control, and other genetic algorithm applications.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Particle algorithm.doc