文件名称:Mateda2.0

  • 所属分类:
  • matlab例程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2012-11-26
  • 文件大小:
  • 1.31mb
  • 下载次数:
  • 0次
  • 提 供 者:
  • Muha****
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

Matlab Package for Estimation of distribution algorithm
(系统自动生成,下载前可以参看下载内容)

下载文件列表

Mateda2.0

.........\readme.txt

.........\InitEnvironments.m

.........\Mateda2.0-UserGuide.pdf

.........\license.gpl

.........\RunEDA.m

.........\ordering

.........\replacement

.........\repairing

.........\statistics

.........\local_optimization

.........\seeding

.........\sampling

.........\verbose

.........\learning

.........\ScriptsMateda

.........\knowledge_extraction

.........\functions

.........\otherfiles

.........\stop_conditions

.........\selection

.........\doc

.........\ordering\ParetoRank_ordering.m

.........\........\fitness_ordering.m

.........\........\Pareto_ordering.m

.........\replacement\RT_replacement.m

.........\...........\pop_agregation.m

.........\...........\best_elitism.m

.........\...........\elitism.m

.........\...airing\Trigom_repairing.m

.........\.........\SetWithinBounds_repairing.m

.........\.........\SetInBounds_repairing.m

.........\statistics\simple_pop_statistics.m

.........\local_optimization\local_search_OffHP.m

.........\..................\Greedy_search_OffHP.m

.........\seeding\Bias_Init.m

.........\.......\seed_thispop.m

.........\.......\seeding_unitation_constraint.m

.........\.......\RandomInit.m

.........\.ampling\SampleMixtureofFullGaussianModels.m

.........\........\FindMPE.m

.........\........\SampleMPE_BN.m

.........\........\SampleFDA.m

.........\........\SampleBN.m

.........\........\MOAGenerateIndividual.m

.........\........\SampleMixtureofUnivGaussianModels.m

.........\........\SampleGaussianUnivModel.m

.........\........\Find_kMPEs.m

.........\........\SampleGaussianFullModel.m

.........\........\MNGibbsGenerateIndividual.m

.........\........\MOAGeneratePopulation.m

.........\verbose\simple_verbose.m

.........\learning\LearnGaussianNetwork.m

.........\........\LearnMOAProb.m

.........\........\LearnMixtureofFullGaussianModels.m

.........\........\LearnMargProdModel.m

.........\........\LearnMOAModel.m

.........\........\LearnGaussianUnivModel.m

.........\........\LearnTModel.m

.........\........\LearnBN.m

.........\........\FindNeighborhood.m

.........\........\FactAffinityElim.m

.........\........\LearnFDA.m

.........\........\LearnTreeModel.m

.........\........\FactAffinity.m

.........\........\FindMargProb.m

.........\........\LearnMixtureofUnivGaussianModels.m

.........\........\CreateMarkovModel.m

.........\........\LearnFDAParameters.m

.........\........\LearnMOAParameters.m

.........\........\LearnGaussianFullModel.m

.........\........\CreateTreeStructure.m

.........\ScriptsMateda\ReadmeScripts.txt

.........\.............\AnalysisScripts

.........\.............\FitnessModScripts

.........\.............\OptimizationScripts

.........\.............\AnalysisScripts\FitnessMeasuresComp.m

.........\.............\...............\BN_ParallelCoords.m

.........\.............\...............\BN_StructureVisualization.m

.........\.............\...............\BN_StructureHierClustering.m

.........\.............\...............\BN_StructureFiltering.m

.........\.............\FitnessModScripts\BN_kMPCs.m

.........\.............\.................\BN_MPCsFitness.m

.........\.............\.................\BN_Prediction.m

.........\.............\OptimizationScripts\DefaultEDA_NKRandom.m

.........\.............\...................\GaussianMultivariate_OfflineHPProtein.m

.........\.............\...................\DefaultEDA_OneMax.m

.........\.............\...................\AffEDA_Deceptive3.m

.........\.............\...................\TreeFDA_HPProtein.m

.........\.............\...................\EBNA_PLS_MPC_NKRandom.m

.........\.............\...................\BayesianTree_IsingModel.m

.........\.............\...................\GaussianUMDA_ContSumFunction.m

.........\.............\...................\MOA_Deceptive3.m

.........\.............\...................\UMDA_OneMax.m

.........\.............\...................\EBNA_MultiObj_SAT.m

.........\.............\...................\VariantsGaussianEDAs_trajectory.m

.........\.............\...................\EBNA_Deceptive3.m

.........\.............\...................\GaussianUMDA_OfflineHPProtein.m

.........\.........

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org