文件名称:Mateda2.0
介绍说明--下载内容均来自于网络,请自行研究使用
Matlab Package for Estimation of distribution algorithm
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Mateda2.0
.........\readme.txt
.........\InitEnvironments.m
.........\Mateda2.0-UserGuide.pdf
.........\license.gpl
.........\RunEDA.m
.........\ordering
.........\replacement
.........\repairing
.........\statistics
.........\local_optimization
.........\seeding
.........\sampling
.........\verbose
.........\learning
.........\ScriptsMateda
.........\knowledge_extraction
.........\functions
.........\otherfiles
.........\stop_conditions
.........\selection
.........\doc
.........\ordering\ParetoRank_ordering.m
.........\........\fitness_ordering.m
.........\........\Pareto_ordering.m
.........\replacement\RT_replacement.m
.........\...........\pop_agregation.m
.........\...........\best_elitism.m
.........\...........\elitism.m
.........\...airing\Trigom_repairing.m
.........\.........\SetWithinBounds_repairing.m
.........\.........\SetInBounds_repairing.m
.........\statistics\simple_pop_statistics.m
.........\local_optimization\local_search_OffHP.m
.........\..................\Greedy_search_OffHP.m
.........\seeding\Bias_Init.m
.........\.......\seed_thispop.m
.........\.......\seeding_unitation_constraint.m
.........\.......\RandomInit.m
.........\.ampling\SampleMixtureofFullGaussianModels.m
.........\........\FindMPE.m
.........\........\SampleMPE_BN.m
.........\........\SampleFDA.m
.........\........\SampleBN.m
.........\........\MOAGenerateIndividual.m
.........\........\SampleMixtureofUnivGaussianModels.m
.........\........\SampleGaussianUnivModel.m
.........\........\Find_kMPEs.m
.........\........\SampleGaussianFullModel.m
.........\........\MNGibbsGenerateIndividual.m
.........\........\MOAGeneratePopulation.m
.........\verbose\simple_verbose.m
.........\learning\LearnGaussianNetwork.m
.........\........\LearnMOAProb.m
.........\........\LearnMixtureofFullGaussianModels.m
.........\........\LearnMargProdModel.m
.........\........\LearnMOAModel.m
.........\........\LearnGaussianUnivModel.m
.........\........\LearnTModel.m
.........\........\LearnBN.m
.........\........\FindNeighborhood.m
.........\........\FactAffinityElim.m
.........\........\LearnFDA.m
.........\........\LearnTreeModel.m
.........\........\FactAffinity.m
.........\........\FindMargProb.m
.........\........\LearnMixtureofUnivGaussianModels.m
.........\........\CreateMarkovModel.m
.........\........\LearnFDAParameters.m
.........\........\LearnMOAParameters.m
.........\........\LearnGaussianFullModel.m
.........\........\CreateTreeStructure.m
.........\ScriptsMateda\ReadmeScripts.txt
.........\.............\AnalysisScripts
.........\.............\FitnessModScripts
.........\.............\OptimizationScripts
.........\.............\AnalysisScripts\FitnessMeasuresComp.m
.........\.............\...............\BN_ParallelCoords.m
.........\.............\...............\BN_StructureVisualization.m
.........\.............\...............\BN_StructureHierClustering.m
.........\.............\...............\BN_StructureFiltering.m
.........\.............\FitnessModScripts\BN_kMPCs.m
.........\.............\.................\BN_MPCsFitness.m
.........\.............\.................\BN_Prediction.m
.........\.............\OptimizationScripts\DefaultEDA_NKRandom.m
.........\.............\...................\GaussianMultivariate_OfflineHPProtein.m
.........\.............\...................\DefaultEDA_OneMax.m
.........\.............\...................\AffEDA_Deceptive3.m
.........\.............\...................\TreeFDA_HPProtein.m
.........\.............\...................\EBNA_PLS_MPC_NKRandom.m
.........\.............\...................\BayesianTree_IsingModel.m
.........\.............\...................\GaussianUMDA_ContSumFunction.m
.........\.............\...................\MOA_Deceptive3.m
.........\.............\...................\UMDA_OneMax.m
.........\.............\...................\EBNA_MultiObj_SAT.m
.........\.............\...................\VariantsGaussianEDAs_trajectory.m
.........\.............\...................\EBNA_Deceptive3.m
.........\.............\...................\GaussianUMDA_OfflineHPProtein.m
.........\.........
.........\readme.txt
.........\InitEnvironments.m
.........\Mateda2.0-UserGuide.pdf
.........\license.gpl
.........\RunEDA.m
.........\ordering
.........\replacement
.........\repairing
.........\statistics
.........\local_optimization
.........\seeding
.........\sampling
.........\verbose
.........\learning
.........\ScriptsMateda
.........\knowledge_extraction
.........\functions
.........\otherfiles
.........\stop_conditions
.........\selection
.........\doc
.........\ordering\ParetoRank_ordering.m
.........\........\fitness_ordering.m
.........\........\Pareto_ordering.m
.........\replacement\RT_replacement.m
.........\...........\pop_agregation.m
.........\...........\best_elitism.m
.........\...........\elitism.m
.........\...airing\Trigom_repairing.m
.........\.........\SetWithinBounds_repairing.m
.........\.........\SetInBounds_repairing.m
.........\statistics\simple_pop_statistics.m
.........\local_optimization\local_search_OffHP.m
.........\..................\Greedy_search_OffHP.m
.........\seeding\Bias_Init.m
.........\.......\seed_thispop.m
.........\.......\seeding_unitation_constraint.m
.........\.......\RandomInit.m
.........\.ampling\SampleMixtureofFullGaussianModels.m
.........\........\FindMPE.m
.........\........\SampleMPE_BN.m
.........\........\SampleFDA.m
.........\........\SampleBN.m
.........\........\MOAGenerateIndividual.m
.........\........\SampleMixtureofUnivGaussianModels.m
.........\........\SampleGaussianUnivModel.m
.........\........\Find_kMPEs.m
.........\........\SampleGaussianFullModel.m
.........\........\MNGibbsGenerateIndividual.m
.........\........\MOAGeneratePopulation.m
.........\verbose\simple_verbose.m
.........\learning\LearnGaussianNetwork.m
.........\........\LearnMOAProb.m
.........\........\LearnMixtureofFullGaussianModels.m
.........\........\LearnMargProdModel.m
.........\........\LearnMOAModel.m
.........\........\LearnGaussianUnivModel.m
.........\........\LearnTModel.m
.........\........\LearnBN.m
.........\........\FindNeighborhood.m
.........\........\FactAffinityElim.m
.........\........\LearnFDA.m
.........\........\LearnTreeModel.m
.........\........\FactAffinity.m
.........\........\FindMargProb.m
.........\........\LearnMixtureofUnivGaussianModels.m
.........\........\CreateMarkovModel.m
.........\........\LearnFDAParameters.m
.........\........\LearnMOAParameters.m
.........\........\LearnGaussianFullModel.m
.........\........\CreateTreeStructure.m
.........\ScriptsMateda\ReadmeScripts.txt
.........\.............\AnalysisScripts
.........\.............\FitnessModScripts
.........\.............\OptimizationScripts
.........\.............\AnalysisScripts\FitnessMeasuresComp.m
.........\.............\...............\BN_ParallelCoords.m
.........\.............\...............\BN_StructureVisualization.m
.........\.............\...............\BN_StructureHierClustering.m
.........\.............\...............\BN_StructureFiltering.m
.........\.............\FitnessModScripts\BN_kMPCs.m
.........\.............\.................\BN_MPCsFitness.m
.........\.............\.................\BN_Prediction.m
.........\.............\OptimizationScripts\DefaultEDA_NKRandom.m
.........\.............\...................\GaussianMultivariate_OfflineHPProtein.m
.........\.............\...................\DefaultEDA_OneMax.m
.........\.............\...................\AffEDA_Deceptive3.m
.........\.............\...................\TreeFDA_HPProtein.m
.........\.............\...................\EBNA_PLS_MPC_NKRandom.m
.........\.............\...................\BayesianTree_IsingModel.m
.........\.............\...................\GaussianUMDA_ContSumFunction.m
.........\.............\...................\MOA_Deceptive3.m
.........\.............\...................\UMDA_OneMax.m
.........\.............\...................\EBNA_MultiObj_SAT.m
.........\.............\...................\VariantsGaussianEDAs_trajectory.m
.........\.............\...................\EBNA_Deceptive3.m
.........\.............\...................\GaussianUMDA_OfflineHPProtein.m
.........\.........