文件名称:shenjingwangluo
介绍说明--下载内容均来自于网络,请自行研究使用
T=[1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1]
输入向量的最大值和最小值
threshold=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
net=newff(threshold,[31 3],{ tansig , logsig }, trainlm )
训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000
net.trainParam.goal=0.01
LP.lr=0.1
net = train(net,P,T)
测试数据,和训练数据不一致
P_test=[0.2101 0.0950 0.1298 0.1359 0.2601 0.1001 0.0753 0.0890 0.0389 0.1451 0.0128 0.1590 0.2452 0.0512 0.1319
0.2593 0.1800 0.0711 0.2801 0.1501 0.1298 0.1001 0.1891 0.2531 0.0875 0.0058 0.1803 0.0992 0.0802 0.1002 -T = [1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1] ' of the maximum and minimum input vector threshold = [0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1] net = newff (threshold, [31 3], {' tansig' , ' logsig' }, ' trainlm' ) training times for the 1000 target of 0.01 training, learning rate of 0.1 net.trainParam.epochs = 1000 net. trainParam.goal = 0.01 LP.lr = 0.1 net = train (net, P, T) test data, and training data inconsistencies P_test = [0.2101 0.0950 0.1298 0.1359 0.2601 0.1001 0.0753 0.0890 0.0389 0.1451 0.0128 0.1590 0.2452 0.0512 0.1319 0.2593 0.1800 0.0711 0.2801 0.1501 0.1298 0.1001 0.1891 0.2531 0.0875 0.0058 0.1803 0.0992 0.0802 0.1002
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1]
输入向量的最大值和最小值
threshold=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
net=newff(threshold,[31 3],{ tansig , logsig }, trainlm )
训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000
net.trainParam.goal=0.01
LP.lr=0.1
net = train(net,P,T)
测试数据,和训练数据不一致
P_test=[0.2101 0.0950 0.1298 0.1359 0.2601 0.1001 0.0753 0.0890 0.0389 0.1451 0.0128 0.1590 0.2452 0.0512 0.1319
0.2593 0.1800 0.0711 0.2801 0.1501 0.1298 0.1001 0.1891 0.2531 0.0875 0.0058 0.1803 0.0992 0.0802 0.1002 -T = [1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1] ' of the maximum and minimum input vector threshold = [0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1] net = newff (threshold, [31 3], {' tansig' , ' logsig' }, ' trainlm' ) training times for the 1000 target of 0.01 training, learning rate of 0.1 net.trainParam.epochs = 1000 net. trainParam.goal = 0.01 LP.lr = 0.1 net = train (net, P, T) test data, and training data inconsistencies P_test = [0.2101 0.0950 0.1298 0.1359 0.2601 0.1001 0.0753 0.0890 0.0389 0.1451 0.0128 0.1590 0.2452 0.0512 0.1319 0.2593 0.1800 0.0711 0.2801 0.1501 0.1298 0.1001 0.1891 0.2531 0.0875 0.0058 0.1803 0.0992 0.0802 0.1002
相关搜索: tansig
(系统自动生成,下载前可以参看下载内容)
下载文件列表
shenjingwangluo.txt