文件名称:MATLAB-usefull-function-in-all
介绍说明--下载内容均来自于网络,请自行研究使用
MATLAB语言常用算法程序集(书中涉及的源程序代码)
例如插值、函数逼近、特征值计算等等,,常用的都在这里了-MATLAB algorithms commonly used in assembly language (in the book related to the source code) such as interpolation, function approximation, eigenvalue calculation, etc., are commonly used here
例如插值、函数逼近、特征值计算等等,,常用的都在这里了-MATLAB algorithms commonly used in assembly language (in the book related to the source code) such as interpolation, function approximation, eigenvalue calculation, etc., are commonly used here
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB语言常用算法程序集(书中涉及的源程序代码)\第10章 非线性方程组求解\DiffParam1.m
................................................\........................\DiffParam2.m
................................................\........................\mulBFS.m
................................................\........................\mulConj.m
................................................\........................\mulDamp.m
................................................\........................\mulDFP.m
................................................\........................\mulDiscNewton.m
................................................\........................\mulDNewton.m
................................................\........................\mulFastDown.m
................................................\........................\mulGSND.m
................................................\........................\mulGXF1.m
................................................\........................\mulGXF2.m
................................................\........................\mulMix.m
................................................\........................\mulNewton.m
................................................\........................\mulNewtonSOR.m
................................................\........................\mulNewtonStev.m
................................................\........................\mulNumYT.m
................................................\........................\mulRank1.m
................................................\........................\mulSimNewton.m
................................................\........................\mulStablePoint.m
................................................\........................\mulVNewton.m
................................................\........................\SOR.m
................................................\...1章 解线性方程组的直接法\conjgrad.m
................................................\............................\Crout.m
................................................\............................\Doolittle.m
................................................\............................\followup.m
................................................\............................\GaussJordanXQ.m
................................................\............................\GaussXQAllMain.m
................................................\............................\GaussXQByOrder.m
................................................\............................\GaussXQLineMain.m
................................................\............................\InvAddSide.m
................................................\............................\qrxq.m
................................................\............................\SymPos1.m
................................................\............................\SymPos2.m
................................................\............................\SymPos3.m
................................................\............................\Yesf.m
................................................\...2章 解线性方程组的迭代法\BGS.m
................................................\............................\BJ.m
................................................\............................\BSOR.m
................................................\............................\conjgrad.m
................................................\............................\crs.m
................................................\............................\fastdown.m
................................................\............................\gauseidel.m
................................................\............................\grs.m
................................................\............................\jacobi.m
................................................\............................\JOR.m
................................................\............................\preconjgra
................................................\........................\DiffParam2.m
................................................\........................\mulBFS.m
................................................\........................\mulConj.m
................................................\........................\mulDamp.m
................................................\........................\mulDFP.m
................................................\........................\mulDiscNewton.m
................................................\........................\mulDNewton.m
................................................\........................\mulFastDown.m
................................................\........................\mulGSND.m
................................................\........................\mulGXF1.m
................................................\........................\mulGXF2.m
................................................\........................\mulMix.m
................................................\........................\mulNewton.m
................................................\........................\mulNewtonSOR.m
................................................\........................\mulNewtonStev.m
................................................\........................\mulNumYT.m
................................................\........................\mulRank1.m
................................................\........................\mulSimNewton.m
................................................\........................\mulStablePoint.m
................................................\........................\mulVNewton.m
................................................\........................\SOR.m
................................................\...1章 解线性方程组的直接法\conjgrad.m
................................................\............................\Crout.m
................................................\............................\Doolittle.m
................................................\............................\followup.m
................................................\............................\GaussJordanXQ.m
................................................\............................\GaussXQAllMain.m
................................................\............................\GaussXQByOrder.m
................................................\............................\GaussXQLineMain.m
................................................\............................\InvAddSide.m
................................................\............................\qrxq.m
................................................\............................\SymPos1.m
................................................\............................\SymPos2.m
................................................\............................\SymPos3.m
................................................\............................\Yesf.m
................................................\...2章 解线性方程组的迭代法\BGS.m
................................................\............................\BJ.m
................................................\............................\BSOR.m
................................................\............................\conjgrad.m
................................................\............................\crs.m
................................................\............................\fastdown.m
................................................\............................\gauseidel.m
................................................\............................\grs.m
................................................\............................\jacobi.m
................................................\............................\JOR.m
................................................\............................\preconjgra