文件名称:MATLAB
介绍说明--下载内容均来自于网络,请自行研究使用
MATLAB函数参考手册,查看matlab函数作用以及功能。- SVMLSPex02.m
Two Dimension SVM Problem, Two Class and Separable Situation
Difference with SVMLSPex01.m:
Take the Largrange Function (16)as object function insteads ||W||,
so it need more time than SVMLSex01.m
Method from Christopher J. C. Burges:
"A Tutorial on Support Vector Machines for Pattern Recognition", page 9
Objective: min "f(A)=-sum(ai)+sum[sum(ai*yi*xi*aj*yj*xj)]/2" ,function (16)
Subject to: sum{ai*yi}=0 ,function (15)
and ai>=0 for any i, the particular set of constraints C2 (page 9, line14).
The optimizing variables is "Lagrange Multipliers": A=[a1,a2,...,am],m is the number of total samples.
Two Dimension SVM Problem, Two Class and Separable Situation
Difference with SVMLSPex01.m:
Take the Largrange Function (16)as object function insteads ||W||,
so it need more time than SVMLSex01.m
Method from Christopher J. C. Burges:
"A Tutorial on Support Vector Machines for Pattern Recognition", page 9
Objective: min "f(A)=-sum(ai)+sum[sum(ai*yi*xi*aj*yj*xj)]/2" ,function (16)
Subject to: sum{ai*yi}=0 ,function (15)
and ai>=0 for any i, the particular set of constraints C2 (page 9, line14).
The optimizing variables is "Lagrange Multipliers": A=[a1,a2,...,am],m is the number of total samples.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB函数参考手册.pdf