文件名称:codeofroughset

  • 所属分类:
  • matlab例程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2012-11-26
  • 文件大小:
  • 28kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • 谢**
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

粗糙集的基本算法,包括数据补齐,属性约简,值约简,规则生成,非常实用。-Rough set theory is a new mathematical approach to imperfect knowledge. The problem of imperfect knowledge has been tackled for a long time by philosophers, logicians and mathematicians. Recently it became also a crucial issue for computer scientists, particularly in the area of artificial intelligence.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

codeofroughset\data reduction with fuzzy rough sets or fuzzy mutual information\demo.m

..............\................................................................\entropy.m

..............\................................................................\entropy_interval.m

..............\................................................................\fs_con_N.m

..............\................................................................\fs_entropy.asv

..............\................................................................\fs_entropy.m

..............\................................................................\fs_neighbor.asv

..............\................................................................\fs_neighbor.m

..............\................................................................\kersim.m

..............\................................................................\kersim_crisp.m

..............\fuzzy preference rough set based feature evaluation and selection\FGC.m

..............\.................................................................\FLC.m

..............\.................................................................\FS_PL_FRS.m

..............\.................................................................\FS_PL_RS.m

..............\.................................................................\FUC.m

..............\.................................................................\GC.m

..............\.................................................................\LC.m

..............\.................................................................\UC.m

..............\kernelized fuzzy rough set based feature evaluation selection\certainty_s_gs.m

..............\.............................................................\certainty_theta_gs.m

..............\.............................................................\dependency_s_gs.m

..............\.............................................................\dependency_theta_gs.m

..............\.............................................................\FS_GKFS.m

..............\.............................................................\Ranking heterogeneous features with mRMR and mutual information\MI_mRMR.m

..............\KNN classifier\KNN.m

..............\neighborhood classifier\neighborhood classifier\KNN.m

..............\.......................\.......................\NEC.m

..............\.............mutual information based feature evaluation and selection\FS_FW_NE.m

..............\......................................................................\NMI.m

..............\Neighborhood rough set based feature evaluation and reduction\clsf_dpd.m

..............\.............................................................\clsf_dpd_fast.m

..............\.............................................................\clsf_dpd_fast2.m

..............\.............................................................\clsf_dpd_fast_3.m

..............\.............................................................\NRS_FW_FS.m

..............\kernelized fuzzy rough set based feature evaluation selection\Ranking heterogeneous features with mRMR and mutual information

..............\neighborhood classifier\neighborhood classifier

..............\data reduction with fuzzy rough sets or fuzzy mutual information

..............\fuzzy preference rough set based feature evaluation and selection

..............\kernelized fuzzy rough set based feature evaluation selection

..............\KNN classifier

..............\neighborhood classifier

..............\neighborhood mutual information based feature evaluation and selection

..............\Neighborhood rough set based feature evaluation and reduction

codeofroughset

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org