文件名称:codeofroughset
介绍说明--下载内容均来自于网络,请自行研究使用
粗糙集的基本算法,包括数据补齐,属性约简,值约简,规则生成,非常实用。-Rough set theory is a new mathematical approach to imperfect knowledge. The problem of imperfect knowledge has been tackled for a long time by philosophers, logicians and mathematicians. Recently it became also a crucial issue for computer scientists, particularly in the area of artificial intelligence.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
codeofroughset\data reduction with fuzzy rough sets or fuzzy mutual information\demo.m
..............\................................................................\entropy.m
..............\................................................................\entropy_interval.m
..............\................................................................\fs_con_N.m
..............\................................................................\fs_entropy.asv
..............\................................................................\fs_entropy.m
..............\................................................................\fs_neighbor.asv
..............\................................................................\fs_neighbor.m
..............\................................................................\kersim.m
..............\................................................................\kersim_crisp.m
..............\fuzzy preference rough set based feature evaluation and selection\FGC.m
..............\.................................................................\FLC.m
..............\.................................................................\FS_PL_FRS.m
..............\.................................................................\FS_PL_RS.m
..............\.................................................................\FUC.m
..............\.................................................................\GC.m
..............\.................................................................\LC.m
..............\.................................................................\UC.m
..............\kernelized fuzzy rough set based feature evaluation selection\certainty_s_gs.m
..............\.............................................................\certainty_theta_gs.m
..............\.............................................................\dependency_s_gs.m
..............\.............................................................\dependency_theta_gs.m
..............\.............................................................\FS_GKFS.m
..............\.............................................................\Ranking heterogeneous features with mRMR and mutual information\MI_mRMR.m
..............\KNN classifier\KNN.m
..............\neighborhood classifier\neighborhood classifier\KNN.m
..............\.......................\.......................\NEC.m
..............\.............mutual information based feature evaluation and selection\FS_FW_NE.m
..............\......................................................................\NMI.m
..............\Neighborhood rough set based feature evaluation and reduction\clsf_dpd.m
..............\.............................................................\clsf_dpd_fast.m
..............\.............................................................\clsf_dpd_fast2.m
..............\.............................................................\clsf_dpd_fast_3.m
..............\.............................................................\NRS_FW_FS.m
..............\kernelized fuzzy rough set based feature evaluation selection\Ranking heterogeneous features with mRMR and mutual information
..............\neighborhood classifier\neighborhood classifier
..............\data reduction with fuzzy rough sets or fuzzy mutual information
..............\fuzzy preference rough set based feature evaluation and selection
..............\kernelized fuzzy rough set based feature evaluation selection
..............\KNN classifier
..............\neighborhood classifier
..............\neighborhood mutual information based feature evaluation and selection
..............\Neighborhood rough set based feature evaluation and reduction
codeofroughset
..............\................................................................\entropy.m
..............\................................................................\entropy_interval.m
..............\................................................................\fs_con_N.m
..............\................................................................\fs_entropy.asv
..............\................................................................\fs_entropy.m
..............\................................................................\fs_neighbor.asv
..............\................................................................\fs_neighbor.m
..............\................................................................\kersim.m
..............\................................................................\kersim_crisp.m
..............\fuzzy preference rough set based feature evaluation and selection\FGC.m
..............\.................................................................\FLC.m
..............\.................................................................\FS_PL_FRS.m
..............\.................................................................\FS_PL_RS.m
..............\.................................................................\FUC.m
..............\.................................................................\GC.m
..............\.................................................................\LC.m
..............\.................................................................\UC.m
..............\kernelized fuzzy rough set based feature evaluation selection\certainty_s_gs.m
..............\.............................................................\certainty_theta_gs.m
..............\.............................................................\dependency_s_gs.m
..............\.............................................................\dependency_theta_gs.m
..............\.............................................................\FS_GKFS.m
..............\.............................................................\Ranking heterogeneous features with mRMR and mutual information\MI_mRMR.m
..............\KNN classifier\KNN.m
..............\neighborhood classifier\neighborhood classifier\KNN.m
..............\.......................\.......................\NEC.m
..............\.............mutual information based feature evaluation and selection\FS_FW_NE.m
..............\......................................................................\NMI.m
..............\Neighborhood rough set based feature evaluation and reduction\clsf_dpd.m
..............\.............................................................\clsf_dpd_fast.m
..............\.............................................................\clsf_dpd_fast2.m
..............\.............................................................\clsf_dpd_fast_3.m
..............\.............................................................\NRS_FW_FS.m
..............\kernelized fuzzy rough set based feature evaluation selection\Ranking heterogeneous features with mRMR and mutual information
..............\neighborhood classifier\neighborhood classifier
..............\data reduction with fuzzy rough sets or fuzzy mutual information
..............\fuzzy preference rough set based feature evaluation and selection
..............\kernelized fuzzy rough set based feature evaluation selection
..............\KNN classifier
..............\neighborhood classifier
..............\neighborhood mutual information based feature evaluation and selection
..............\Neighborhood rough set based feature evaluation and reduction
codeofroughset