文件名称:sijielonggekutafajieyijiechangweifenfangcheng
- 所属分类:
- 数学计算/工程计算
- 资源属性:
- [Windows] [Visual C] [Basic/ASP] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 4kb
- 下载次数:
- 0次
- 提 供 者:
- 天*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
本程序是用Visual Biasic 实现用四阶龙格-库塔方法对一阶常微分方程(其通式为dy/dx=m-qx(m,q为常数))求解,并用点表示出各函数值在坐标轴上的位置。
龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。
坐标表示其位置,这样可以直观的看出不用微分方程解的位置以及它们的联系。
-This procedure is used with Visual Biasic achieve fourth-order Runge- Kutta method of differential equation (the general formula dy/dx = m-qx (m, q is a constant)) solution, and expressed with the function point value in the axis position. Runge- Kutta (Runge-Kutta) method is a high-precision single step, Bi Oula more precise format, which uses an indirect technique using the Taylor series. He not only retained the Taylor formula and high accuracy while avoiding excessive numerical calculation guide. He has knocked out Taylor' s formula, so it requires the solution should have asked for better smoothness. Coordinates of its location, so you can not directly see the location of Differential Equations and their links.
龙格-库塔(Runge-Kutta)方法是一种高精度的单步法,比欧拉格式更精确,它采用了间接使用泰勒级数的技术。他既保留了泰勒公式的精度高的特点又避免过多的计算导数值。他是有泰勒公式推倒出的,因此它要求所求的解应具有较好的光滑性。
坐标表示其位置,这样可以直观的看出不用微分方程解的位置以及它们的联系。
-This procedure is used with Visual Biasic achieve fourth-order Runge- Kutta method of differential equation (the general formula dy/dx = m-qx (m, q is a constant)) solution, and expressed with the function point value in the axis position. Runge- Kutta (Runge-Kutta) method is a high-precision single step, Bi Oula more precise format, which uses an indirect technique using the Taylor series. He not only retained the Taylor formula and high accuracy while avoiding excessive numerical calculation guide. He has knocked out Taylor' s formula, so it requires the solution should have asked for better smoothness. Coordinates of its location, so you can not directly see the location of Differential Equations and their links.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
VB程序\Form1.frm
......\Form1.frx
......\Form2.frm
......\MSSCCPRJ.SCC
......\Project1.vbp
......\Project1.vbw
......\工程1.vbp
......\工程1.vbw
VB程序
......\Form1.frx
......\Form2.frm
......\MSSCCPRJ.SCC
......\Project1.vbp
......\Project1.vbw
......\工程1.vbp
......\工程1.vbw
VB程序