文件名称:titanium
介绍说明--下载内容均来自于网络,请自行研究使用
VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
相关搜索: SVC
(系统自动生成,下载前可以参看下载内容)
下载文件列表
titanium.mat