文件名称:jiyutezhengronghehemohuhepanbian
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
提出了基于特征融合和模糊核判别分析(FKDA)的面部表情识别方法。首先,从每幅人脸图像中手工定
位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基
准点处的Gabor小波系数值作为表情图像的Gabor特征;其次,利用典型相关分析技术对几何特征和Gabor特征进
行特征融合,作为表情识别的输人特征;然后,利用模糊核判别分析方法进一步提取表情的鉴别特征;最后,采用最
近邻分类器完成表情的分类识别。通过在JAFFE国际表情数据库和Ekman“面部表情图片”数据库上的实验,证实
了所提方法的有效性。-Proposed based on feature fusion and fuzzy kernel discriminant analysis (FKDA) facial expression recognition. First, face images of each piece of hand-set
Bit 34 basis points, as the geometric features of facial expression images, while using Gabor wavelet transform method to transform the images of each piece of expression, and extraction-based
Quasi-point of the Gabor wavelet coefficients, as Gabor features of facial expression image second, using canonical correlation analysis on the geometric features and Gabor features into
Line feature fusion, as expression recognition of input features then, using fuzzy kernel discriminant analysis method to extract and further identification features of expression Finally, the most
Neighbor classifier to complete expression of the classification. International expression by JAFFE database and Ekman "facial image" database on the experiment, confirmed
The proposed method.
位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基
准点处的Gabor小波系数值作为表情图像的Gabor特征;其次,利用典型相关分析技术对几何特征和Gabor特征进
行特征融合,作为表情识别的输人特征;然后,利用模糊核判别分析方法进一步提取表情的鉴别特征;最后,采用最
近邻分类器完成表情的分类识别。通过在JAFFE国际表情数据库和Ekman“面部表情图片”数据库上的实验,证实
了所提方法的有效性。-Proposed based on feature fusion and fuzzy kernel discriminant analysis (FKDA) facial expression recognition. First, face images of each piece of hand-set
Bit 34 basis points, as the geometric features of facial expression images, while using Gabor wavelet transform method to transform the images of each piece of expression, and extraction-based
Quasi-point of the Gabor wavelet coefficients, as Gabor features of facial expression image second, using canonical correlation analysis on the geometric features and Gabor features into
Line feature fusion, as expression recognition of input features then, using fuzzy kernel discriminant analysis method to extract and further identification features of expression Finally, the most
Neighbor classifier to complete expression of the classification. International expression by JAFFE database and Ekman "facial image" database on the experiment, confirmed
The proposed method.
相关搜索: Facial
Feature
Point
Extraction
FUZZY
facial
expression
recognition
FKDA
face
recognition
by
using
fuzzy
c-mean
image
features
extraction
using
wavelet
fuzzy
classifier
canonical
correlation
analysis
图像
特征
融合
识别
图像
特征融合
Feature
Point
Extraction
FUZZY
facial
expression
recognition
FKDA
face
recognition
by
using
fuzzy
c-mean
image
features
extraction
using
wavelet
fuzzy
classifier
canonical
correlation
analysis
图像
特征
融合
识别
图像
特征融合
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于特征融合和模糊核判别分析的面部表情识别方法.pdf