文件名称:cffcqj
介绍说明--下载内容均来自于网络,请自行研究使用
差分方程求解
实验步骤:
主界面下进入实验五的“差分方程求解”子系统,输入希望看到的输出样点数
1) 输入差分方程系数向量
输入顺序为: , 。其中 N+1 为差分方程两边系数最大数目,如果有一边输入系数个数小于 N+1,将按不足系数为零计算。
2) 输入系统初始状态向量
输入顺序为
鼠标单击确定按钮,以数值和图形两种方式显示单位冲激响应和输出响应
3) 确定差分方程形式:y(k)-y(k-1)+0.35y(k-2)=2x(k)-x(k-1),
-Differential equation
Experimental steps:
Five main interface into the experiment a "differential equation" subsystem, enter to see the output sample points
1) Input coefficient vector differential equation
Enter the following order:,. N+1 differential equations in which both sides of the coefficient for the maximum number, if one side is the number of input factors is less than N+1, will be less than zero coefficient calculation.
2) Enter the initial system state vector
Input sequence
Mouse click the OK button, two ways of numerical and graphical display unit impulse response and output response
3) determine the differential equation form: y (k)-y (k-1)+0.35 y (k-2) = 2x (k)-x (k-1),
实验步骤:
主界面下进入实验五的“差分方程求解”子系统,输入希望看到的输出样点数
1) 输入差分方程系数向量
输入顺序为: , 。其中 N+1 为差分方程两边系数最大数目,如果有一边输入系数个数小于 N+1,将按不足系数为零计算。
2) 输入系统初始状态向量
输入顺序为
鼠标单击确定按钮,以数值和图形两种方式显示单位冲激响应和输出响应
3) 确定差分方程形式:y(k)-y(k-1)+0.35y(k-2)=2x(k)-x(k-1),
-Differential equation
Experimental steps:
Five main interface into the experiment a "differential equation" subsystem, enter to see the output sample points
1) Input coefficient vector differential equation
Enter the following order:,. N+1 differential equations in which both sides of the coefficient for the maximum number, if one side is the number of input factors is less than N+1, will be less than zero coefficient calculation.
2) Enter the initial system state vector
Input sequence
Mouse click the OK button, two ways of numerical and graphical display unit impulse response and output response
3) determine the differential equation form: y (k)-y (k-1)+0.35 y (k-2) = 2x (k)-x (k-1),
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cffcqj.doc