文件名称:DE
介绍说明--下载内容均来自于网络,请自行研究使用
用数组模拟递归函数,实现递归函数的简化算法,具体要求看英文描述。-We all love recursion! Don t we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1)+ w(a, b-1, c-1)- w(a, b-1, c)
otherwise it returns:
w(a-1, b, c)+ w(a-1, b-1, c)+ w(a-1, b, c-1)- w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of-1-1-1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1
2 2 2
10 4 6
50 50 50
-1 7 18
-1-1-1
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1)+ w(a, b-1, c-1)- w(a, b-1, c)
otherwise it returns:
w(a-1, b, c)+ w(a-1, b-1, c)+ w(a-1, b, c-1)- w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of-1-1-1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1
2 2 2
10 4 6
50 50 50
-1 7 18
-1-1-1
(系统自动生成,下载前可以参看下载内容)
下载文件列表
DE.cpp