文件名称:Neural_Network_Learning
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [PDF]
- 上传时间:
- 2012-11-26
- 文件大小:
- 19.16mb
- 下载次数:
- 0次
- 提 供 者:
- x***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
基于人工神经网络技术解决诸如人脸识别等模式识别问题,提供了一些快速算法,适用于应用和研究。-In this book, we concentrate on statistical and computational ques-
tions associated with the use of rich function classes, such as artificial
neural networks, for pattern recognition and prediction problems.相关搜索: 神经网络
人脸
tions associated with the use of rich function classes, such as artificial
neural networks, for pattern recognition and prediction problems.相关搜索: 神经网络
人脸
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Bibliography .pdf
Preface .pdf
1 - Introduction .pdf
2 - The Pattern Classification Problem .pdf
3 - The Growth Function and VC-Dimension .pdf
4 - General Upper Bounds on Sample Complexity .pdf
5 - General Lower Bounds on Sample Complexity .pdf
6 - The VC-Dimension of Linear Threshold Networks .pdf
7 - Bounding the VC-Dimension using Geometric Techniques .pdf
8 - Vapnik-Chervonenkis Dimension Bounds for Neural Networks .pdf
9 - Classification with Real-Valued Functions .pdf
10 - Covering Numbers and Uniform Convergence .pdf
11 - The Pseudo-Dimension and Fat-Shattering Dimension .pdf
12 - Bounding Covering Numbers with Dimensions .pdf
13 - The Sample Complexity of Classification Learning .pdf
14 - The Dimensions of Neural Networks.pdf
15 - Model Selection .pdf
16 - Learning Classes of Real Functions .pdf
17 - Uniform Convergence Results for Real Function Classes .pdf
18 - Bounding Covering Numbers .pdf
19 - Sample Complexity of Learning Real Function Classes .pdf
20 - Convex Classes .pdf
21 - Other Learning Problems .pdf
22 - Efficient Learning .pdf
23 - Learning as Optimization .pdf
24 - The Boolean Perceptron .pdf
25 - Hardness Results for Feed-Forward Networks .pdf
26 - Constructive Learning Algorithms for Two-Layer Networks.pdf
Appendix 1 - Useful Results .pdf
notes.txt
Preface .pdf
1 - Introduction .pdf
2 - The Pattern Classification Problem .pdf
3 - The Growth Function and VC-Dimension .pdf
4 - General Upper Bounds on Sample Complexity .pdf
5 - General Lower Bounds on Sample Complexity .pdf
6 - The VC-Dimension of Linear Threshold Networks .pdf
7 - Bounding the VC-Dimension using Geometric Techniques .pdf
8 - Vapnik-Chervonenkis Dimension Bounds for Neural Networks .pdf
9 - Classification with Real-Valued Functions .pdf
10 - Covering Numbers and Uniform Convergence .pdf
11 - The Pseudo-Dimension and Fat-Shattering Dimension .pdf
12 - Bounding Covering Numbers with Dimensions .pdf
13 - The Sample Complexity of Classification Learning .pdf
14 - The Dimensions of Neural Networks.pdf
15 - Model Selection .pdf
16 - Learning Classes of Real Functions .pdf
17 - Uniform Convergence Results for Real Function Classes .pdf
18 - Bounding Covering Numbers .pdf
19 - Sample Complexity of Learning Real Function Classes .pdf
20 - Convex Classes .pdf
21 - Other Learning Problems .pdf
22 - Efficient Learning .pdf
23 - Learning as Optimization .pdf
24 - The Boolean Perceptron .pdf
25 - Hardness Results for Feed-Forward Networks .pdf
26 - Constructive Learning Algorithms for Two-Layer Networks.pdf
Appendix 1 - Useful Results .pdf
notes.txt