文件名称:PCA_classifier
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
A basic PCA classifier is provided here for a two class classification problem.
An example is given, with some multimodal MRI scans from Multiple Sclerosis patients, in which the brain lesions of two patients are annotated and in the third are detected by the PCA model.
An example is given, with some multimodal MRI scans from Multiple Sclerosis patients, in which the brain lesions of two patients are annotated and in the third are detected by the PCA model.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
PCA_classifier\license.txt
..............\PCA_classifier_version1b\apply_model.m
..............\........................\example_classifier_ms.m
..............\........................\get_feature_vectors.c
..............\........................\get_feature_vectors.m
..............\........................\Literature\MICCAI_MS_Challenge_UTwente_Final.pdf
..............\........................\Literature
..............\........................\TestData\patient3_FLAIR.png
..............\........................\........\patient3_T1.png
..............\........................\........\patient3_T2.png
..............\........................\TestData
..............\........................\.rainingData\patient1_FLAIR.png
..............\........................\............\patient1_lesion.png
..............\........................\............\patient1_T1.png
..............\........................\............\patient1_T2.png
..............\........................\............\patient2_FLAIR.png
..............\........................\............\patient2_lesion.png
..............\........................\............\patient2_T1.png
..............\........................\............\patient2_T2.png
..............\........................\TrainingData
..............\........................\train_model.m
..............\PCA_classifier_version1b
PCA_classifier
..............\PCA_classifier_version1b\apply_model.m
..............\........................\example_classifier_ms.m
..............\........................\get_feature_vectors.c
..............\........................\get_feature_vectors.m
..............\........................\Literature\MICCAI_MS_Challenge_UTwente_Final.pdf
..............\........................\Literature
..............\........................\TestData\patient3_FLAIR.png
..............\........................\........\patient3_T1.png
..............\........................\........\patient3_T2.png
..............\........................\TestData
..............\........................\.rainingData\patient1_FLAIR.png
..............\........................\............\patient1_lesion.png
..............\........................\............\patient1_T1.png
..............\........................\............\patient1_T2.png
..............\........................\............\patient2_FLAIR.png
..............\........................\............\patient2_lesion.png
..............\........................\............\patient2_T1.png
..............\........................\............\patient2_T2.png
..............\........................\TrainingData
..............\........................\train_model.m
..............\PCA_classifier_version1b
PCA_classifier