文件名称:G
介绍说明--下载内容均来自于网络,请自行研究使用
最大化
f=(1000+x)(1.1+0.01y)(1+0.01z)/3.5
满足约束:
x+20y+15z-S=0
x>=0
y>=0
z>=0
y<=90
其中S是常数,该问题可以通过拉格朗日乘数法计算极值,也可以通过替换掉一个变量将问题转化成二元函数求极值
需要注意的是求出的极值点不一定在定义域(x>=0,y>=0,z>=0,y<=90)内,由于这是一个单峰函数,当极值点不在定义域内时,f的最大值必然落在边界上,此时只需要计算边界上的最大值即可。-Maximize f = (1000+ x) (1.1+0.01 y) (1+0.01 z)/3.5 satisfy the constraint: x+20 y+15 z-S = 0 x> = 0 y> = 0 z> = 0 y < = 90 where S is a constant, the problem can be calculated through the Lagrangian multiplier extreme, it can replace a variable is transformed into the dual function for extreme Note that the extreme points obtained not necessarily in the domain (x> = 0, y> = 0, z> = 0, y < = 90), due this is a single peak function, when the extreme point is not within the definition of the time, f the maximum bound fall on the border, the border at this time only the maximum can be calculated.
f=(1000+x)(1.1+0.01y)(1+0.01z)/3.5
满足约束:
x+20y+15z-S=0
x>=0
y>=0
z>=0
y<=90
其中S是常数,该问题可以通过拉格朗日乘数法计算极值,也可以通过替换掉一个变量将问题转化成二元函数求极值
需要注意的是求出的极值点不一定在定义域(x>=0,y>=0,z>=0,y<=90)内,由于这是一个单峰函数,当极值点不在定义域内时,f的最大值必然落在边界上,此时只需要计算边界上的最大值即可。-Maximize f = (1000+ x) (1.1+0.01 y) (1+0.01 z)/3.5 satisfy the constraint: x+20 y+15 z-S = 0 x> = 0 y> = 0 z> = 0 y < = 90 where S is a constant, the problem can be calculated through the Lagrangian multiplier extreme, it can replace a variable is transformed into the dual function for extreme Note that the extreme points obtained not necessarily in the domain (x> = 0, y> = 0, z> = 0, y < = 90), due this is a single peak function, when the extreme point is not within the definition of the time, f the maximum bound fall on the border, the border at this time only the maximum can be calculated.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
G.cpp