文件名称:MATLABcode
介绍说明--下载内容均来自于网络,请自行研究使用
Matlab 解偏微分程序代码,适合科研人言,学生,工程师等-Solution of partial differential Matlab code for scientific research vary widely, students, engineers, etc.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB语言常用算法程序集\MATLAB语言常用算法程序集\readme.doc
........................\........................\光盘的算法程序索引.xls
........................\........................\第10章 非线性方程组求解\DiffParam1.m
........................\........................\........................\DiffParam2.m
........................\........................\........................\mulBFS.m
........................\........................\........................\mulConj.m
........................\........................\........................\mulDamp.m
........................\........................\........................\mulDFP.m
........................\........................\........................\mulDiscNewton.m
........................\........................\........................\mulDNewton.m
........................\........................\........................\mulFastDown.m
........................\........................\........................\mulGSND.m
........................\........................\........................\mulGXF1.m
........................\........................\........................\mulGXF2.m
........................\........................\........................\mulMix.m
........................\........................\........................\mulNewton.m
........................\........................\........................\mulNewtonSOR.m
........................\........................\........................\mulNewtonStev.m
........................\........................\........................\mulNumYT.m
........................\........................\........................\mulRank1.m
........................\........................\........................\mulSimNewton.m
........................\........................\........................\mulStablePoint.m
........................\........................\........................\mulVNewton.m
........................\........................\........................\SOR.m
........................\........................\...1章 解线性方程组的直接法\conjgrad.m
........................\........................\............................\Crout.m
........................\........................\............................\Doolittle.m
........................\........................\............................\followup.m
........................\........................\............................\GaussJordanXQ.m
........................\........................\............................\GaussXQAllMain.m
........................\........................\............................\GaussXQByOrder.m
........................\........................\............................\GaussXQLineMain.m
........................\........................\............................\InvAddSide.m
........................\........................\............................\qrxq.m
........................\........................\............................\SymPos1.m
........................\........................\............................\SymPos2.m
........................\........................\............................\SymPos3.m
........................\........................\............................\Yesf.m
........................\........................\...2章 解线性方程组的迭代法\BGS.m
........................\........................\............................\BJ.m
........................\........................\............................\BSOR.m
........................\........................\............................\conjgrad.m
........................\........................\............................\crs.m
........................\........................\............................\fastdown.m
........................\........................\............................\gauseidel.m
........................\........................\............................\grs.m
........................\........................\............................\ja
........................\........................\光盘的算法程序索引.xls
........................\........................\第10章 非线性方程组求解\DiffParam1.m
........................\........................\........................\DiffParam2.m
........................\........................\........................\mulBFS.m
........................\........................\........................\mulConj.m
........................\........................\........................\mulDamp.m
........................\........................\........................\mulDFP.m
........................\........................\........................\mulDiscNewton.m
........................\........................\........................\mulDNewton.m
........................\........................\........................\mulFastDown.m
........................\........................\........................\mulGSND.m
........................\........................\........................\mulGXF1.m
........................\........................\........................\mulGXF2.m
........................\........................\........................\mulMix.m
........................\........................\........................\mulNewton.m
........................\........................\........................\mulNewtonSOR.m
........................\........................\........................\mulNewtonStev.m
........................\........................\........................\mulNumYT.m
........................\........................\........................\mulRank1.m
........................\........................\........................\mulSimNewton.m
........................\........................\........................\mulStablePoint.m
........................\........................\........................\mulVNewton.m
........................\........................\........................\SOR.m
........................\........................\...1章 解线性方程组的直接法\conjgrad.m
........................\........................\............................\Crout.m
........................\........................\............................\Doolittle.m
........................\........................\............................\followup.m
........................\........................\............................\GaussJordanXQ.m
........................\........................\............................\GaussXQAllMain.m
........................\........................\............................\GaussXQByOrder.m
........................\........................\............................\GaussXQLineMain.m
........................\........................\............................\InvAddSide.m
........................\........................\............................\qrxq.m
........................\........................\............................\SymPos1.m
........................\........................\............................\SymPos2.m
........................\........................\............................\SymPos3.m
........................\........................\............................\Yesf.m
........................\........................\...2章 解线性方程组的迭代法\BGS.m
........................\........................\............................\BJ.m
........................\........................\............................\BSOR.m
........................\........................\............................\conjgrad.m
........................\........................\............................\crs.m
........................\........................\............................\fastdown.m
........................\........................\............................\gauseidel.m
........................\........................\............................\grs.m
........................\........................\............................\ja