文件名称:FusionSegmentationAlgorithm
介绍说明--下载内容均来自于网络,请自行研究使用
针对合成孔径雷达(SAR) 图像含有大量斑点噪声的特点,基于Contourlet 的多尺度、局部化、方向性和各向
异性等优点,并结合隐马尔科夫树( HMT) 模型和隐马尔科夫场(MRF) ,提出了一种基于Contourlet 域持续性和聚
集性的SAR 图像模糊融合分割算法。该算法有效捕获了Contourlet 子带的持续性和聚集性,并分别用HMT 和
MRF 来刻画,再依据模糊测度,将多尺度HMT 和MRF 有机融合,建立Contourlet 域HMT2MRF 融合模型,并导
出新模型下的最大后验概率(MAP) 分割公式。对实测SAR 图像进行了仿真,仿真结果和分析表明:与小波域上的
HMT2MRF 融合分割及Contourlet 域上HMT 和MRF 分割算法相比,该算法在抑制斑点噪声的同时,有效地提高
了SAR 图像的分割精度- In view of the speckle noise in the synthetic aperture radar (SAR) images , and based on the Contourlet′s
advantages of multiscale , localization , directionality , and anisot ropy , a new SAR image fusion segmentation
algorithm based on the pe rsis tence and clustering in the Contourlet domain is p roposed. The algorithm captures the
pe rsis tence and clus tering of the Contourlet t ransform , which is modeled by hidden Markov t ree (HMT) and Markov
random field (MRF) , respectively. Then , these two models are fused by fuzzy logic , resulting in a Contourlet
domain HMT2MRF fusion model . Finally , the maximum a poste rior (MAP) segmentation equation for the new fusion
model is deduced. The algorithm is used to emulate the real SAR images . Simulation results and analysis indicate that
the p roposed algorithm effectively reduces the influence of multiplicative speckle noise , imp roves the segmentation
accuracy and p rovides a bet te r visual quality for SAR images ove r the
异性等优点,并结合隐马尔科夫树( HMT) 模型和隐马尔科夫场(MRF) ,提出了一种基于Contourlet 域持续性和聚
集性的SAR 图像模糊融合分割算法。该算法有效捕获了Contourlet 子带的持续性和聚集性,并分别用HMT 和
MRF 来刻画,再依据模糊测度,将多尺度HMT 和MRF 有机融合,建立Contourlet 域HMT2MRF 融合模型,并导
出新模型下的最大后验概率(MAP) 分割公式。对实测SAR 图像进行了仿真,仿真结果和分析表明:与小波域上的
HMT2MRF 融合分割及Contourlet 域上HMT 和MRF 分割算法相比,该算法在抑制斑点噪声的同时,有效地提高
了SAR 图像的分割精度- In view of the speckle noise in the synthetic aperture radar (SAR) images , and based on the Contourlet′s
advantages of multiscale , localization , directionality , and anisot ropy , a new SAR image fusion segmentation
algorithm based on the pe rsis tence and clustering in the Contourlet domain is p roposed. The algorithm captures the
pe rsis tence and clus tering of the Contourlet t ransform , which is modeled by hidden Markov t ree (HMT) and Markov
random field (MRF) , respectively. Then , these two models are fused by fuzzy logic , resulting in a Contourlet
domain HMT2MRF fusion model . Finally , the maximum a poste rior (MAP) segmentation equation for the new fusion
model is deduced. The algorithm is used to emulate the real SAR images . Simulation results and analysis indicate that
the p roposed algorithm effectively reduces the influence of multiplicative speckle noise , imp roves the segmentation
accuracy and p rovides a bet te r visual quality for SAR images ove r the
相关搜索: sar
MRF
HMT
Hidden
Markov
Models
image
matlab
sar
image
fusion
sar
2011
speckle
马尔科夫
speckle
synthetic
aperture
radar
MRF
fusion
MRF
HMT
Hidden
Markov
Models
image
matlab
sar
image
fusion
sar
2011
speckle
马尔科夫
speckle
synthetic
aperture
radar
MRF
fusion
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于Contourlet域持续性和聚集性的合成孔径雷达图像融合分割算法.pdf