文件名称:shujuguanlian
介绍说明--下载内容均来自于网络,请自行研究使用
数据关联是多目标跟踪的一项关键技术。JPDA是大家公认的多目标跟踪中性能较好的数据关联算法,它
认为量测和目标是一一对应的关联关系,但在许多实际情况中,量测和目标是多一多对应的关系。针对上述情况,该文提
出了广义概率数据关联算法(Generalized Probability Data Association,GPDA)。文中从理论上对这两种算法的性能进行了
详细分析,并利用Monte Carlo技术对其性能进行了仿真比较。-Data association is one of the key technologies in multi—target tracking.And JPDA is considered as the best da·
ta association method.JPDA considers the association of measurements with targets is simply one-to-one problem.But in many
practical cases,the association of measurements with targets will be multiple—to—multiple problem.For this case,a
Generalized
Probability Data Association(GPDA)algorithm is proposed in this paper.Furthermore,this paper analyzes the performance of
these two algorithms theoretically.And we give the comparative analysis of those performances by using Monte Carlo method.
认为量测和目标是一一对应的关联关系,但在许多实际情况中,量测和目标是多一多对应的关系。针对上述情况,该文提
出了广义概率数据关联算法(Generalized Probability Data Association,GPDA)。文中从理论上对这两种算法的性能进行了
详细分析,并利用Monte Carlo技术对其性能进行了仿真比较。-Data association is one of the key technologies in multi—target tracking.And JPDA is considered as the best da·
ta association method.JPDA considers the association of measurements with targets is simply one-to-one problem.But in many
practical cases,the association of measurements with targets will be multiple—to—multiple problem.For this case,a
Generalized
Probability Data Association(GPDA)algorithm is proposed in this paper.Furthermore,this paper analyzes the performance of
these two algorithms theoretically.And we give the comparative analysis of those performances by using Monte Carlo method.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
两种多目标数据关联算法的性能研究.pdf