文件名称:svm_perf.tar
介绍说明--下载内容均来自于网络,请自行研究使用
SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping
h: X --> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike regular SVMs, however, which consider only univariate predictions like in classification and regression, SVMstruct can predict complex objects y like trees, sequences, or sets. Examples of problems with complex outputs are natural language parsing, sequence alignment in protein homology detection, and markov models for part-of-speech tagging. The SVMstruct algorithm can also be used for linear-time training of binary and multi-class SVMs under the linear kernel.
-SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping
h: X--> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike regular SVMs, however, which consider only univariate predictions like in classification and regression, SVMstruct can predict complex objects y like trees, sequences, or sets. Examples of problems with complex outputs are natural language parsing, sequence alignment in protein homology detection, and markov models for part-of-speech tagging. The SVMstruct algorithm can also be used for linear-time training of binary and multi-class SVMs under the linear kernel.
h: X --> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike regular SVMs, however, which consider only univariate predictions like in classification and regression, SVMstruct can predict complex objects y like trees, sequences, or sets. Examples of problems with complex outputs are natural language parsing, sequence alignment in protein homology detection, and markov models for part-of-speech tagging. The SVMstruct algorithm can also be used for linear-time training of binary and multi-class SVMs under the linear kernel.
-SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping
h: X--> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike regular SVMs, however, which consider only univariate predictions like in classification and regression, SVMstruct can predict complex objects y like trees, sequences, or sets. Examples of problems with complex outputs are natural language parsing, sequence alignment in protein homology detection, and markov models for part-of-speech tagging. The SVMstruct algorithm can also be used for linear-time training of binary and multi-class SVMs under the linear kernel.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
27796713svm_perf.tar