文件名称:MATLABCommonlyusedprogram
介绍说明--下载内容均来自于网络,请自行研究使用
《MATLAB语言常用算法程序集》一书 的源程序 适用于初学者,有大量常用的函数。-" MATLAB language commonly used algorithm for assembly," a source book for beginners, there are a large number of commonly used functions.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
《MATLAB语言常用算法程序集》一书 的源程序
.........................................\光盘的算法程序索引.xls
.........................................\第10章 非线性方程组求解
.........................................\........................\DiffParam1.m
.........................................\........................\DiffParam2.m
.........................................\........................\mulBFS.m
.........................................\........................\mulConj.m
.........................................\........................\mulDamp.m
.........................................\........................\mulDFP.m
.........................................\........................\mulDiscNewton.m
.........................................\........................\mulDNewton.m
.........................................\........................\mulFastDown.m
.........................................\........................\mulGSND.m
.........................................\........................\mulGXF1.m
.........................................\........................\mulGXF2.m
.........................................\........................\mulMix.m
.........................................\........................\mulNewton.m
.........................................\........................\mulNewtonSOR.m
.........................................\........................\mulNewtonStev.m
.........................................\........................\mulNumYT.m
.........................................\........................\mulRank1.m
.........................................\........................\mulSimNewton.m
.........................................\........................\mulStablePoint.m
.........................................\........................\mulVNewton.m
.........................................\........................\SOR.m
.........................................\第11章 解线性方程组的直接法
.........................................\............................\conjgrad.m
.........................................\............................\Crout.m
.........................................\............................\Doolittle.m
.........................................\............................\followup.m
.........................................\............................\GaussJordanXQ.m
.........................................\............................\GaussXQAllMain.m
.........................................\............................\GaussXQByOrder.m
.........................................\............................\GaussXQLineMain.m
.........................................\............................\InvAddSide.m
.........................................\............................\qrxq.m
.........................................\............................\SymPos1.m
.........................................\............................\SymPos2.m
.........................................\............................\SymPos3.m
.........................................\............................\Yesf.m
.........................................\第12章 解线性方程组的迭代法
.........................................\............................\BGS.m
.........................................\............................\BJ.m
.........................................\............................\BSOR.m
.........................................\............................\conjgrad.m
.........................................\............................\crs.m
.........................................\............................\fastdown.m
.........................................\............................\gauseidel.m
.........................................\............................\grs.m
.........................................\............................\jacobi.m
.........................................\............................\JOR.m
.........................................\............................\preconjgrad.m
.........
.........................................\光盘的算法程序索引.xls
.........................................\第10章 非线性方程组求解
.........................................\........................\DiffParam1.m
.........................................\........................\DiffParam2.m
.........................................\........................\mulBFS.m
.........................................\........................\mulConj.m
.........................................\........................\mulDamp.m
.........................................\........................\mulDFP.m
.........................................\........................\mulDiscNewton.m
.........................................\........................\mulDNewton.m
.........................................\........................\mulFastDown.m
.........................................\........................\mulGSND.m
.........................................\........................\mulGXF1.m
.........................................\........................\mulGXF2.m
.........................................\........................\mulMix.m
.........................................\........................\mulNewton.m
.........................................\........................\mulNewtonSOR.m
.........................................\........................\mulNewtonStev.m
.........................................\........................\mulNumYT.m
.........................................\........................\mulRank1.m
.........................................\........................\mulSimNewton.m
.........................................\........................\mulStablePoint.m
.........................................\........................\mulVNewton.m
.........................................\........................\SOR.m
.........................................\第11章 解线性方程组的直接法
.........................................\............................\conjgrad.m
.........................................\............................\Crout.m
.........................................\............................\Doolittle.m
.........................................\............................\followup.m
.........................................\............................\GaussJordanXQ.m
.........................................\............................\GaussXQAllMain.m
.........................................\............................\GaussXQByOrder.m
.........................................\............................\GaussXQLineMain.m
.........................................\............................\InvAddSide.m
.........................................\............................\qrxq.m
.........................................\............................\SymPos1.m
.........................................\............................\SymPos2.m
.........................................\............................\SymPos3.m
.........................................\............................\Yesf.m
.........................................\第12章 解线性方程组的迭代法
.........................................\............................\BGS.m
.........................................\............................\BJ.m
.........................................\............................\BSOR.m
.........................................\............................\conjgrad.m
.........................................\............................\crs.m
.........................................\............................\fastdown.m
.........................................\............................\gauseidel.m
.........................................\............................\grs.m
.........................................\............................\jacobi.m
.........................................\............................\JOR.m
.........................................\............................\preconjgrad.m
.........