文件名称:Matlab
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
Matlab函数逼近程序,包含下面所列多种算法的程序 。
Chebyshev 用切比雪夫多项式逼近已知函数
Legendre 用勒让德多项式逼近已知函数
Pade 用帕德形式的有理分式逼近已知函数
lmz 用列梅兹算法确定函数的最佳一致逼近多项式
ZJPF 求已知函数的最佳平方逼近多项式
FZZ 用傅立叶级数逼近已知的连续周期函数-Matlab function approximation process, including following the procedures set out in a variety of algorithms. Chebyshev Chebyshev polynomial with a known function approximation using Legendre Legendre polynomial approximation of known function with Pade Pade form of rational fraction approximation of known function listed lmz Metz algorithm used to determine the best uniform approximation function ZJPF order polynomial function of the best known square approximation by Fourier series FZZ polynomial approximation of continuous periodic function of known
Chebyshev 用切比雪夫多项式逼近已知函数
Legendre 用勒让德多项式逼近已知函数
Pade 用帕德形式的有理分式逼近已知函数
lmz 用列梅兹算法确定函数的最佳一致逼近多项式
ZJPF 求已知函数的最佳平方逼近多项式
FZZ 用傅立叶级数逼近已知的连续周期函数-Matlab function approximation process, including following the procedures set out in a variety of algorithms. Chebyshev Chebyshev polynomial with a known function approximation using Legendre Legendre polynomial approximation of known function with Pade Pade form of rational fraction approximation of known function listed lmz Metz algorithm used to determine the best uniform approximation function ZJPF order polynomial function of the best known square approximation by Fourier series FZZ polynomial approximation of continuous periodic function of known
相关搜索: chebyshev
legendre
chebyshev
AND
matlab
切比雪夫
傅立叶级数
切比雪夫多项式
periodic
approximation
matlab
matlab
chebyshev
pade
legendre
chebyshev
AND
matlab
切比雪夫
傅立叶级数
切比雪夫多项式
periodic
approximation
matlab
matlab
chebyshev
pade
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Matlab函数逼近
..............\Chebyshev.m
..............\FZZ.m
..............\Legendre.m
..............\lmz.m
..............\Pade.m
..............\ZJPF.m
..............\Chebyshev.m
..............\FZZ.m
..............\Legendre.m
..............\lmz.m
..............\Pade.m
..............\ZJPF.m