文件名称:anquanguohe
介绍说明--下载内容均来自于网络,请自行研究使用
先定义允许状态S={(x,y)|x=0或3,y=0,1,2,3 x=y=1,2},
允许决策D={(u,v)|u+v=1,2},求dk<-D(k=0,1,2,…,n),使
状态Sk<-S按照状态转移律S(k+1)=S(k)+(-1)^k*dk,由初始状态
S1=[3,3]经有限步到达状态S(n+1)=[0,0].此为求解多步决策问题- First define to allow the state S = ((x, y) | x = 0 or 3, y = 0,1,2,3 x = y = 1,2), to allow the decision-making D = ((u, v) | u+ v = 1,2), seek dk < -D (k = 0,1,2, ..., n), so that state Sk < -S state transition in accordance with law S (k+1) = S (k )+ (-1) ^ k* dk, from the initial state S1 = [3,3] by the finite-step to reach the status S (n+1) = [0,0]. This is a multi-step decision-making problem solving
允许决策D={(u,v)|u+v=1,2},求dk<-D(k=0,1,2,…,n),使
状态Sk<-S按照状态转移律S(k+1)=S(k)+(-1)^k*dk,由初始状态
S1=[3,3]经有限步到达状态S(n+1)=[0,0].此为求解多步决策问题- First define to allow the state S = ((x, y) | x = 0 or 3, y = 0,1,2,3 x = y = 1,2), to allow the decision-making D = ((u, v) | u+ v = 1,2), seek dk < -D (k = 0,1,2, ..., n), so that state Sk < -S state transition in accordance with law S (k+1) = S (k )+ (-1) ^ k* dk, from the initial state S1 = [3,3] by the finite-step to reach the status S (n+1) = [0,0]. This is a multi-step decision-making problem solving
(系统自动生成,下载前可以参看下载内容)
下载文件列表
anquanguohe.m