文件名称:gabor
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [C/C++] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 16kb
- 下载次数:
- 0次
- 提 供 者:
- 力*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
Gabor小波变换代码用于局部特征提取使用,又相当好的效果-Gabor texture descr iptor have gained much attention for
different aspects of computer vision and pattern recognition.
Recently, on the rayleigh nature of Gabor filter outputs
Rayleigh model Gabor texture descr iptor is proposed.
In this paper, we investigate the performance of these two
Gabor texture descr iptor in texture classification. We built
a texture classification system based on BPNN, and use the
corresponding feature vector from traditional Gabor texture
descr iptor or Rayleigh model one as input of BPNN. We use
three datasets from the Brodatz album database. For all
the three datasets, the original texture images are subdivided
into non-overlapping samples of size 32 × 32. 50
of the total samples are used for training and the rest are
used for testing. We compare the system training time and
recognition accuracy between two Gabor texture descr iptor.
The experimental results show that, it takes more time when
using Rayleigh model Gabor texture descr iptor than tr
different aspects of computer vision and pattern recognition.
Recently, on the rayleigh nature of Gabor filter outputs
Rayleigh model Gabor texture descr iptor is proposed.
In this paper, we investigate the performance of these two
Gabor texture descr iptor in texture classification. We built
a texture classification system based on BPNN, and use the
corresponding feature vector from traditional Gabor texture
descr iptor or Rayleigh model one as input of BPNN. We use
three datasets from the Brodatz album database. For all
the three datasets, the original texture images are subdivided
into non-overlapping samples of size 32 × 32. 50
of the total samples are used for training and the rest are
used for testing. We compare the system training time and
recognition accuracy between two Gabor texture descr iptor.
The experimental results show that, it takes more time when
using Rayleigh model Gabor texture descr iptor than tr
相关搜索: gabor
descr iptor
gabor
vector
descr iptor
gabor
特征提取
gabor
filter
Gabor
小波
gabor
filter
texture
classification
pattern
recognition
using
BPNN
texture
descr iptor
gabor
texture
classification
descr iptor
gabor
vector
descr iptor
gabor
特征提取
gabor
filter
Gabor
小波
gabor
filter
texture
classification
pattern
recognition
using
BPNN
texture
descr iptor
gabor
texture
classification
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LBSL2.C
LBSL3.C
LBSL4.C
LBSL10.C
LBSL10.DAT
LBSL20.C
LBSL20.DAT
LBSL30.C
LBSL30.DAT
LBSL40.C
LBSL40.DAT
LCHII.C
LCHII0.C
LCHII0.DAT
LCOSS.C
LCOSS0.C
LCOSS0.DAT
LELP1.C
LELP2.C
LELP10.C
LELP10.DAT
LELP20.C
LELP20.DAT
LERRF.C
LERRF0.C
LERRF0.DAT
LEXPP.C
LEXPP0.C
LEXPP0.DAT
LFFFF.C
LFFFF0.C
LFFFF0.DAT
LGAM1.C
LGAM2.C
LGAM10.C
LGAM10.DAT
LGAM20.C
LGAM20.DAT
LGASS.C
LGASS0.C
LGASS0.DAT
LSINN.C
LSINN0.C
LSINN0.DAT
LSTDT.C
LSTDT0.C
LSTDT0.DAT
LBETA.C
LBETA0.C
LBETA0.DAT
LBSL1.C
LBSL3.C
LBSL4.C
LBSL10.C
LBSL10.DAT
LBSL20.C
LBSL20.DAT
LBSL30.C
LBSL30.DAT
LBSL40.C
LBSL40.DAT
LCHII.C
LCHII0.C
LCHII0.DAT
LCOSS.C
LCOSS0.C
LCOSS0.DAT
LELP1.C
LELP2.C
LELP10.C
LELP10.DAT
LELP20.C
LELP20.DAT
LERRF.C
LERRF0.C
LERRF0.DAT
LEXPP.C
LEXPP0.C
LEXPP0.DAT
LFFFF.C
LFFFF0.C
LFFFF0.DAT
LGAM1.C
LGAM2.C
LGAM10.C
LGAM10.DAT
LGAM20.C
LGAM20.DAT
LGASS.C
LGASS0.C
LGASS0.DAT
LSINN.C
LSINN0.C
LSINN0.DAT
LSTDT.C
LSTDT0.C
LSTDT0.DAT
LBETA.C
LBETA0.C
LBETA0.DAT
LBSL1.C