文件名称:sdToolkit
介绍说明--下载内容均来自于网络,请自行研究使用
Semi-automatic Differentiation (SD) Toolkit is a Matlab implementation
of the complex step derivative (CSD) technique for the differentiation of real-valued functions. The Toolkit consists of three core functions:
sdGrad.m - Returns CSD approximation of the gradient (g) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdJac.m - Returns CSD approximation of the Jacobian (J) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdHg.m - Rerurns CSD approximation of the Hessian (H) of the
scalar-valued target function fun(p,Extra), according to Equation 7 of the
paper. It also returns the centered-difference CSD approximation of the
gradient as a by-product.
For a brief describtion of the functions in the toolkit,
type ,help sdToolkit> at Matlab command prompt.-The sdToolkit demonstrates the complex step derivative method on a variety of functions and geophysically oriented examples
of the complex step derivative (CSD) technique for the differentiation of real-valued functions. The Toolkit consists of three core functions:
sdGrad.m - Returns CSD approximation of the gradient (g) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdJac.m - Returns CSD approximation of the Jacobian (J) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdHg.m - Rerurns CSD approximation of the Hessian (H) of the
scalar-valued target function fun(p,Extra), according to Equation 7 of the
paper. It also returns the centered-difference CSD approximation of the
gradient as a by-product.
For a brief describtion of the functions in the toolkit,
type ,help sdToolkit> at Matlab command prompt.-The sdToolkit demonstrates the complex step derivative method on a variety of functions and geophysically oriented examples
(系统自动生成,下载前可以参看下载内容)
下载文件列表
sdToolkit
.........\private
.........\.......\gFault1d.m
.........\.......\myContour.m
.........\.......\Plots.m
.........\.......\sdFgHW2.m
.........\.......\tFun1.m
.........\.......\mDipole2d.m
.........\.......\Jplots.m
.........\.......\tFun2.m
.........\.......\fdGrad.m
.........\.......\fdHess.m
.........\.......\sdFgHW1.m
.........\.......\Contents.m
.........\.......\DampNewton.m
.........\sdDemo3.m
.........\sdGradx.m
.........\readme.txt
.........\sdDemo1.m
.........\sdHessq.m
.........\sdHessx.m
.........\sdDemo2.m
.........\sdGrad.m
.........\sdDemo5.m
.........\sdDemo6A.m
.........\sdHg.m
.........\sdJac.m
.........\sdLPx.m
.........\sdDemo6.m
.........\Contents.m
.........\sdDemo4.m
.........\private
.........\.......\gFault1d.m
.........\.......\myContour.m
.........\.......\Plots.m
.........\.......\sdFgHW2.m
.........\.......\tFun1.m
.........\.......\mDipole2d.m
.........\.......\Jplots.m
.........\.......\tFun2.m
.........\.......\fdGrad.m
.........\.......\fdHess.m
.........\.......\sdFgHW1.m
.........\.......\Contents.m
.........\.......\DampNewton.m
.........\sdDemo3.m
.........\sdGradx.m
.........\readme.txt
.........\sdDemo1.m
.........\sdHessq.m
.........\sdHessx.m
.........\sdDemo2.m
.........\sdGrad.m
.........\sdDemo5.m
.........\sdDemo6A.m
.........\sdHg.m
.........\sdJac.m
.........\sdLPx.m
.........\sdDemo6.m
.........\Contents.m
.........\sdDemo4.m