文件名称:suanfadaquan
介绍说明--下载内容均来自于网络,请自行研究使用
很多程序的集合,在日常生活中必须的算法大全-A collection of many programs, in their daily lives must be an algorithm Daquan
相关搜索: 算法大全
(系统自动生成,下载前可以参看下载内容)
下载文件列表
算法大全\光盘的算法程序索引.xls
........\第10章 非线性方程组求解\DiffParam1.m
........\........................\DiffParam2.m
........\........................\mulBFS.m
........\........................\mulConj.m
........\........................\mulDamp.m
........\........................\mulDFP.m
........\........................\mulDiscNewton.m
........\........................\mulDNewton.m
........\........................\mulFastDown.m
........\........................\mulGSND.m
........\........................\mulGXF1.m
........\........................\mulGXF2.m
........\........................\mulMix.m
........\........................\mulNewton.m
........\........................\mulNewtonSOR.m
........\........................\mulNewtonStev.m
........\........................\mulNumYT.m
........\........................\mulRank1.m
........\........................\mulSimNewton.m
........\........................\mulStablePoint.m
........\........................\mulVNewton.m
........\........................\SOR.m
........\...1章 解线性方程组的直接法\conjgrad.m
........\............................\Crout.m
........\............................\Doolittle.m
........\............................\followup.m
........\............................\GaussJordanXQ.m
........\............................\GaussXQAllMain.m
........\............................\GaussXQByOrder.m
........\............................\GaussXQLineMain.m
........\............................\InvAddSide.m
........\............................\qrxq.m
........\............................\SymPos1.m
........\............................\SymPos2.m
........\............................\SymPos3.m
........\............................\Yesf.m
........\...2章 解线性方程组的迭代法\BGS.m
........\............................\BJ.m
........\............................\BSOR.m
........\............................\conjgrad.m
........\............................\crs.m
........\............................\fastdown.m
........\............................\gauseidel.m
........\............................\grs.m
........\............................\jacobi.m
........\............................\JOR.m
........\............................\preconjgrad.m
........\............................\richason.m
........\............................\rs.m
........\............................\SOR.m
........\............................\SSOR.m
........\............................\twostep.m
........\...3章 随机数生成\AELDist.m
........\..................\BenuliDist.m
........\..................\BGDist.m
........\..................\CauthyDist.m
........\..................\CombineLinear.m
........\..................\GaussDist.m
........\..................\LaplaceDist.m
........\..................\MixMOD.m
........\..................\MulMOD1.m
........\..................\MulMOD2.m
........\..................\PFQZ.m
........\..................\PoisonDist.m
........\..................\PowerDist.m
........\..................\PrimeMOD.m
........\..................\RelayDist.m
........\..................\test.m
........\..................\TwoDist.m
........\..................\WBDist.m
........\...4章 特殊函数计算\bessel.m
........\....................\bessel2.m
........\....................\besselm.m
........\....................\besselm2.m
........\....................\Beta.m
........\....................\betap.m
........\....................\CIx.m
........\....................\EIx.m
........\....................\EIx2.m
........\....................\Ellipint1.m
........\....................\Ellipint2.m
........\....................\ErrFunc.m
........\....................\factbygama.m
........\....................\gamafun.m
........\....................\gamap.m
........\....................\IntGauss.m
........\....................\IntGaussLager.m
........\....................\IntSimpson.m
........\....................\lngama.m
........\....................\SIx.m
........\....................\SmartSimpson.m
........\...5章 常微分方程的初值问题\DEEuler.m
........\..................
........\第10章 非线性方程组求解\DiffParam1.m
........\........................\DiffParam2.m
........\........................\mulBFS.m
........\........................\mulConj.m
........\........................\mulDamp.m
........\........................\mulDFP.m
........\........................\mulDiscNewton.m
........\........................\mulDNewton.m
........\........................\mulFastDown.m
........\........................\mulGSND.m
........\........................\mulGXF1.m
........\........................\mulGXF2.m
........\........................\mulMix.m
........\........................\mulNewton.m
........\........................\mulNewtonSOR.m
........\........................\mulNewtonStev.m
........\........................\mulNumYT.m
........\........................\mulRank1.m
........\........................\mulSimNewton.m
........\........................\mulStablePoint.m
........\........................\mulVNewton.m
........\........................\SOR.m
........\...1章 解线性方程组的直接法\conjgrad.m
........\............................\Crout.m
........\............................\Doolittle.m
........\............................\followup.m
........\............................\GaussJordanXQ.m
........\............................\GaussXQAllMain.m
........\............................\GaussXQByOrder.m
........\............................\GaussXQLineMain.m
........\............................\InvAddSide.m
........\............................\qrxq.m
........\............................\SymPos1.m
........\............................\SymPos2.m
........\............................\SymPos3.m
........\............................\Yesf.m
........\...2章 解线性方程组的迭代法\BGS.m
........\............................\BJ.m
........\............................\BSOR.m
........\............................\conjgrad.m
........\............................\crs.m
........\............................\fastdown.m
........\............................\gauseidel.m
........\............................\grs.m
........\............................\jacobi.m
........\............................\JOR.m
........\............................\preconjgrad.m
........\............................\richason.m
........\............................\rs.m
........\............................\SOR.m
........\............................\SSOR.m
........\............................\twostep.m
........\...3章 随机数生成\AELDist.m
........\..................\BenuliDist.m
........\..................\BGDist.m
........\..................\CauthyDist.m
........\..................\CombineLinear.m
........\..................\GaussDist.m
........\..................\LaplaceDist.m
........\..................\MixMOD.m
........\..................\MulMOD1.m
........\..................\MulMOD2.m
........\..................\PFQZ.m
........\..................\PoisonDist.m
........\..................\PowerDist.m
........\..................\PrimeMOD.m
........\..................\RelayDist.m
........\..................\test.m
........\..................\TwoDist.m
........\..................\WBDist.m
........\...4章 特殊函数计算\bessel.m
........\....................\bessel2.m
........\....................\besselm.m
........\....................\besselm2.m
........\....................\Beta.m
........\....................\betap.m
........\....................\CIx.m
........\....................\EIx.m
........\....................\EIx2.m
........\....................\Ellipint1.m
........\....................\Ellipint2.m
........\....................\ErrFunc.m
........\....................\factbygama.m
........\....................\gamafun.m
........\....................\gamap.m
........\....................\IntGauss.m
........\....................\IntGaussLager.m
........\....................\IntSimpson.m
........\....................\lngama.m
........\....................\SIx.m
........\....................\SmartSimpson.m
........\...5章 常微分方程的初值问题\DEEuler.m
........\..................