文件名称:R-KDDA
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 727kb
- 下载次数:
- 0次
- 提 供 者:
- y*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
核直接线性判别方法:图像及高维复杂数据模式识别的利器!内有方法开发的相关文档说明!经典!-The matlab functions implement the methods presented in the paper [TNN_KDDA02.pdf]
Juwei Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Face Recognition Using
Kernel Direct Discriminant Analysis Algorithms", IEEE Transactions on Neural
Networks, Vol. 14, No. 1, Page: 117-126, January 2003.
and the chapter [JLu_KP_ANV.pdf] (An extension to the above TNN paper)
Juwei Lu, K.N. Plataniotis and A.N. Venetsanopoulos, 揔ernel Discriminant Learning
with Application to Face Recognition? to appear, in 揝upport Vector Machines:
Theory and Applications? Lipo WANG, Editors, Springer-Verlag, to be published in
2004.
Juwei Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Face Recognition Using
Kernel Direct Discriminant Analysis Algorithms", IEEE Transactions on Neural
Networks, Vol. 14, No. 1, Page: 117-126, January 2003.
and the chapter [JLu_KP_ANV.pdf] (An extension to the above TNN paper)
Juwei Lu, K.N. Plataniotis and A.N. Venetsanopoulos, 揔ernel Discriminant Learning
with Application to Face Recognition? to appear, in 揝upport Vector Machines:
Theory and Applications? Lipo WANG, Editors, Springer-Verlag, to be published in
2004.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
R-KDDA(核直接线性判别方法)
..........................\F_EigenSys.m
..........................\F_KDDA_PolyPrj.m
..........................\F_KDDA_PolyPro.m
..........................\F_KDDA_RbfPrj.m
..........................\F_KDDA_RbfPro.m
..........................\JLu_KP_ANV.pdf
..........................\readme.txt
..........................\TNN_KDDA02.pdf
..........................\F_EigenSys.m
..........................\F_KDDA_PolyPrj.m
..........................\F_KDDA_PolyPro.m
..........................\F_KDDA_RbfPrj.m
..........................\F_KDDA_RbfPro.m
..........................\JLu_KP_ANV.pdf
..........................\readme.txt
..........................\TNN_KDDA02.pdf