文件名称:KLtransform
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [WORD]
- 上传时间:
- 2012-11-26
- 文件大小:
- 2kb
- 下载次数:
- 0次
- 提 供 者:
- 龙*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
(1)应用9×9的窗口对上述图象进行随机抽样,共抽样200块子图象;
(2)将所有子图象按列相接变成一个81维的行向量;
(3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量;
(4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。
(5)求出所有子块的特征向量。
-(1) the application of 9 × 9 window of these images at random, a total sample of 200 sub-image (2) all sub-image by out-phase into a 81-dimensional vector lines (3) All 200 line vector KL transform, derive its corresponding covariance matrix eigenvectors and eigenvalues, in descending order eigenvalues and corresponding eigenvectors (4) a choice to 40 corresponding to the largest eigenvalue eigenvector as the main element, the original image block to the 40 on the projection eigenvector obtained projection coefficient is the sub-block eigenvector. (5) calculated for all sub-block eigenvector.
(2)将所有子图象按列相接变成一个81维的行向量;
(3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量;
(4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。
(5)求出所有子块的特征向量。
-(1) the application of 9 × 9 window of these images at random, a total sample of 200 sub-image (2) all sub-image by out-phase into a 81-dimensional vector lines (3) All 200 line vector KL transform, derive its corresponding covariance matrix eigenvectors and eigenvalues, in descending order eigenvalues and corresponding eigenvectors (4) a choice to 40 corresponding to the largest eigenvalue eigenvector as the main element, the original image block to the 40 on the projection eigenvector obtained projection coefficient is the sub-block eigenvector. (5) calculated for all sub-block eigenvector.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
KLtransform.doc