文件名称:fft
介绍说明--下载内容均来自于网络,请自行研究使用
for(k=j k<128 k=k+2*b) /* for (3) */
{ TR=dataR[k] TI=dataI[k] temp=dataR[k+b]
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p]
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p]
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p]
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p]
} -fft
{ TR=dataR[k] TI=dataI[k] temp=dataR[k+b]
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p]
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p]
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p]
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p]
} -fft
(系统自动生成,下载前可以参看下载内容)
下载文件列表
fft.txt