文件名称:ekfslam_web_v2.0
介绍说明--下载内容均来自于网络,请自行研究使用
虽然粒子滤波算法可以作为解决SLAM问题有效手段,但是该算法仍然存在着一些问题其中最主要的问题是需要用大量的样本数量能很好地近似系统的后验概率密度。-Although the particle filter can be used as an effective means to solve the SLAM problem, but the algorithm still exist some problems in which the most important issue is the need for a large number of sample size with a good approximation to the system a posteriori probability density.
相关搜索: 粒子滤波
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ekfslam
.......\add_control_noise.m
.......\add_observation_noise.m
.......\augment.m
.......\augment_associate_known.m
.......\compute_steering.m
.......\configfile.m
.......\data_associate.m
.......\data_associate_known.m
.......\ekfslam_sim.m
.......\example_densemap.mat
.......\example_densermap.mat
.......\example_linemap.mat
.......\example_webmap.mat
.......\frontend.fig
.......\frontend.m
.......\get_observations.m
.......\KF_cholesky_update.m
.......\KF_IEKF_update.m
.......\KF_simple_update.m
.......\line_plot_conversion.m
.......\observe_heading.m
.......\observe_model.m
.......\pi_to_pi.m
.......\plot_feature_loci.m
.......\predict.m
.......\readme.txt
.......\sqrtm_2by2.m
.......\transformtoglobal.m
.......\update.m
.......\update_iekf.m
.......\vehicle_model.m
.......\add_control_noise.m
.......\add_observation_noise.m
.......\augment.m
.......\augment_associate_known.m
.......\compute_steering.m
.......\configfile.m
.......\data_associate.m
.......\data_associate_known.m
.......\ekfslam_sim.m
.......\example_densemap.mat
.......\example_densermap.mat
.......\example_linemap.mat
.......\example_webmap.mat
.......\frontend.fig
.......\frontend.m
.......\get_observations.m
.......\KF_cholesky_update.m
.......\KF_IEKF_update.m
.......\KF_simple_update.m
.......\line_plot_conversion.m
.......\observe_heading.m
.......\observe_model.m
.......\pi_to_pi.m
.......\plot_feature_loci.m
.......\predict.m
.......\readme.txt
.......\sqrtm_2by2.m
.......\transformtoglobal.m
.......\update.m
.......\update_iekf.m
.......\vehicle_model.m