文件名称:ccfc
介绍说明--下载内容均来自于网络,请自行研究使用
差分方程求解
实验步骤:
主界面下进入实验五的“差分方程求解”子系统,输入希望看到的输出样点数
输入差分方程系数向量
输入顺序为:,。其中 N+1 为差分方程两边系数最大数目,如果有一边输入系数个数小于 N+1,将按不足系数为零计算。
输入系统初始状态向量
输入顺序为
鼠标单击确定按钮,以数值和图形两种方式显示单位冲激响应和输出响应
3) 确定差分方程形式:y(k)-y(k-1)+0.35y(k-2)=2x(k)-x(k-1),-Experimental steps for solving differential equations: the main interface into five experimental " differential equation" subsystems, would like to see the output of input sample points difference equation coefficient of input vector input sequence as follows:,. One of N+1 differential equations for the maximum number of factors on both sides, if there is one less than the number of input coefficient of N+1, the calculation will be less than zero coefficient. Initial state vector input system for the importation of the order of the mouse button to click OK to both numerical and graphical display unit impulse response and output in response to 3) to determine the form of differential equation: y (k)-y (k-1)+0.35 y (k-2) = 2x (k)-x (k-1),
实验步骤:
主界面下进入实验五的“差分方程求解”子系统,输入希望看到的输出样点数
输入差分方程系数向量
输入顺序为:,。其中 N+1 为差分方程两边系数最大数目,如果有一边输入系数个数小于 N+1,将按不足系数为零计算。
输入系统初始状态向量
输入顺序为
鼠标单击确定按钮,以数值和图形两种方式显示单位冲激响应和输出响应
3) 确定差分方程形式:y(k)-y(k-1)+0.35y(k-2)=2x(k)-x(k-1),-Experimental steps for solving differential equations: the main interface into five experimental " differential equation" subsystems, would like to see the output of input sample points difference equation coefficient of input vector input sequence as follows:,. One of N+1 differential equations for the maximum number of factors on both sides, if there is one less than the number of input coefficient of N+1, the calculation will be less than zero coefficient. Initial state vector input system for the importation of the order of the mouse button to click OK to both numerical and graphical display unit impulse response and output in response to 3) to determine the form of differential equation: y (k)-y (k-1)+0.35 y (k-2) = 2x (k)-x (k-1),
(系统自动生成,下载前可以参看下载内容)
下载文件列表
差分方程求解.doc