文件名称:TSPGA2
介绍说明--下载内容均来自于网络,请自行研究使用
修正后版本
遗传算法是基于达尔文进化论的一种智能优化算法,一种可用于复杂系统优化的具有鲁棒性的搜索算法,适用于解决传统方法难以解决的复杂的、非线性问题,可广泛应用于组合优化、离散优化、工程优化等领域。旅行商问题是一种NP难的组合优化问题,具有重要的理论研究价值和实际应用背景。然而,传统遗传算法中存在有不足,需要提出新的改进的遗传算法,并应用于旅行商问题的求解。-Amended version of genetic algorithm based on Darwin' s theory of evolution is an intelligent optimization algorithm, a complex system can be used to optimize the robustness of the search algorithm, the application of traditional methods to solve difficult and complex, nonlinear problems, can be widely used in combinatorial optimization, discrete optimization, engineering, optimization and other fields. Traveling Salesman Problem is a NP hard combinatorial optimization problem, has important theoretical value and practical application of research background. However, the traditional genetic algorithm, there is less than the need to introduce new improved genetic algorithm, and applied for solving the traveling salesman problem.
遗传算法是基于达尔文进化论的一种智能优化算法,一种可用于复杂系统优化的具有鲁棒性的搜索算法,适用于解决传统方法难以解决的复杂的、非线性问题,可广泛应用于组合优化、离散优化、工程优化等领域。旅行商问题是一种NP难的组合优化问题,具有重要的理论研究价值和实际应用背景。然而,传统遗传算法中存在有不足,需要提出新的改进的遗传算法,并应用于旅行商问题的求解。-Amended version of genetic algorithm based on Darwin' s theory of evolution is an intelligent optimization algorithm, a complex system can be used to optimize the robustness of the search algorithm, the application of traditional methods to solve difficult and complex, nonlinear problems, can be widely used in combinatorial optimization, discrete optimization, engineering, optimization and other fields. Traveling Salesman Problem is a NP hard combinatorial optimization problem, has important theoretical value and practical application of research background. However, the traditional genetic algorithm, there is less than the need to introduce new improved genetic algorithm, and applied for solving the traveling salesman problem.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
TSPGA.exe