文件名称:BP
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 1kb
- 下载次数:
- 1次
- 提 供 者:
- d***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
基于BP神经网络的 参数自学习控制
(1)确定BP网络的结构,即确定输入层节点数M和隐含层节点数Q,并给出各层加权系数的初值 和 ,选定学习速率 和惯性系数 ,此时k=1;
(2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k);
(3)计算神经网络NN各层神经元的输入、输出,NN输出层的输出即为PID控制器的三个可调参数 , , ;
(4)根据(3.34)计算PID控制器的输出u(k);
(5)进行神经网络学习,在线调整加权系数 和 ,实现PID控制参数的自适应调整;
(6)置k=k+1,返回(1)。
-Based on the parameters of BP neural network self-learning control (1) to determine the structure of BP network, that is, determine the input layer nodes M and hidden layer nodes Q, and gives all levels of the initial value and the weighted coefficient, the selected learning rate and inertia coefficient, when k = 1 (2) sample has been rin (k) and the yout (k), calculate the moment of error error (k) = rin (k)-yout (k) (3) calculation of neural network NN all floors of the neurons in input and output, NN output layer is the output of PID controller for the three adjustable parameters,, (4) According to (3.34) Calculation of PID controller output u (k) (5) to carry out neural network learning, on-line adjustment of the weighted coefficient and, realize the adaptive PID control parameters adjust (6) purchase k = k+ 1, return (1).
(1)确定BP网络的结构,即确定输入层节点数M和隐含层节点数Q,并给出各层加权系数的初值 和 ,选定学习速率 和惯性系数 ,此时k=1;
(2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k);
(3)计算神经网络NN各层神经元的输入、输出,NN输出层的输出即为PID控制器的三个可调参数 , , ;
(4)根据(3.34)计算PID控制器的输出u(k);
(5)进行神经网络学习,在线调整加权系数 和 ,实现PID控制参数的自适应调整;
(6)置k=k+1,返回(1)。
-Based on the parameters of BP neural network self-learning control (1) to determine the structure of BP network, that is, determine the input layer nodes M and hidden layer nodes Q, and gives all levels of the initial value and the weighted coefficient, the selected learning rate and inertia coefficient, when k = 1 (2) sample has been rin (k) and the yout (k), calculate the moment of error error (k) = rin (k)-yout (k) (3) calculation of neural network NN all floors of the neurons in input and output, NN output layer is the output of PID controller for the three adjustable parameters,, (4) According to (3.34) Calculation of PID controller output u (k) (5) to carry out neural network learning, on-line adjustment of the weighted coefficient and, realize the adaptive PID control parameters adjust (6) purchase k = k+ 1, return (1).
(系统自动生成,下载前可以参看下载内容)
下载文件列表
BP.m