文件名称:rbf_mems
介绍说明--下载内容均来自于网络,请自行研究使用
为了提高使用精度,研究了某型号MEMS陀螺仪的随机漂移模型。采用游程检验法分析了
该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论,
采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模
型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而
言,其补偿效果提高了大约15%。-In order to improve accuracy, to study a particular model of the MEMS gyroscope random drift model. Using run-length analysis of the test gyro random drift data stationarity, and in accordance with the drift for the average non-stationary, the variance of the random process a smooth conclusion, the use of gradient radial basis (RBF) neural network drift data to build mode. The experimental results show that: compared to the classical RBF network model, this method of establishing a model to better describe the MEMS gyroscope drift special compared with the seasonal time series model, the effect of their compensation increased by approximately 15.
该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论,
采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模
型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而
言,其补偿效果提高了大约15%。-In order to improve accuracy, to study a particular model of the MEMS gyroscope random drift model. Using run-length analysis of the test gyro random drift data stationarity, and in accordance with the drift for the average non-stationary, the variance of the random process a smooth conclusion, the use of gradient radial basis (RBF) neural network drift data to build mode. The experimental results show that: compared to the classical RBF network model, this method of establishing a model to better describe the MEMS gyroscope drift special compared with the seasonal time series model, the effect of their compensation increased by approximately 15.
相关搜索: gyro
mems
rbf
gyroscope
time
series
model
using
neural
network
陀螺仪
mems
gyroscope
MATLAB
RBF
时间序列
mems
matlab
mems
rbf
gyroscope
time
series
model
using
neural
network
陀螺仪
mems
gyroscope
MATLAB
RBF
时间序列
mems
matlab
(系统自动生成,下载前可以参看下载内容)
下载文件列表
梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用.pdf