文件名称:SVD

  • 所属分类:
  • 数学计算/工程计算
  • 资源属性:
  • [C/C++] [源码]
  • 上传时间:
  • 2012-11-26
  • 文件大小:
  • 3kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • z***
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

% 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法,

% 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,

% 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。

% 使用SVD分解法的用途是解最小平方误差法和数据压缩。用svd分解法解线性方程组,在Quke2中就用这个来计算图形信息,性能相当的好。在计算线性方程组时,一些不能分解的矩阵或者严重病态矩阵的线性方程都能很好的得到解- Singular value decomposition (sigular value decomposition, SVD) is another orthogonal matrix decomposition method SVD decomposition is the most reliable method, but it takes more than QR decomposition near ten times the computing time. [U, S, V] = svd (A), in which U and V on behalf of two mutually orthogonal matrix, and the S on behalf of a diagonal matrix. And QR decomposition are the same, the original matrix A is no need for the square matrix. The use of SVD decomposition method are used as a solution of least squares error method and data compression. Using SVD decomposition solution of linear equations, in Quke2 on to use this information to calculate the graphics performance quite good. In the calculation of linear equations, some indecomposable matrix or serious pathological matrix of linear equations can be a very good solution
(系统自动生成,下载前可以参看下载内容)

下载文件列表

SVD.c

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org