文件名称:NEURAL+NETWORK
介绍说明--下载内容均来自于网络,请自行研究使用
bp神经网络算法是解决最优化问题的先进算法之一,本论文讨论了神经网络中使用最为广泛的前馈神经网络。其网络权值学习算法中影响最大的就是误差反向传播算法(back-propagation简称BP算法)。BP算法存在局部极小点,收敛速度慢等缺点。基于优化理论的Levenberg-Marquardt算法忽略了二阶项。该文讨论当误差不为零或者不为线性函数即二阶项S(W)不能忽略时的Hesse矩阵的近似计算,进而训练网络。-bp neural network algorithm to solve optimization problems, one of the advanced algorithm, the paper discusses the neural network in the most widely used feed-forward neural network. Its network weights learning algorithm in the greatest impact is the error back-propagation algorithm (back-propagation algorithm referred to as BP). BP algorithm for the existence of local minimum points, such as the shortcomings of slow convergence. Optimization theory based on the Levenberg-Marquardt algorithm ignores the second-order item. In this paper, the discussion when the error is not zero or not that is second-order linear function of S (W) can not be ignored when the Hesse matrix of approximate calculation, and then training the network.
相关搜索: Back
Propagation
BP神经网络算法
back
propagation
matlab
bp神经网络
Neural
Network
matlab
Marquardt
neural
BP神经网络
MATLAB
feed
forward
back
propagation
neural
Propagation
BP神经网络算法
back
propagation
matlab
bp神经网络
Neural
Network
matlab
Marquardt
neural
BP神经网络
MATLAB
feed
forward
back
propagation
neural
(系统自动生成,下载前可以参看下载内容)
下载文件列表
NEURAL NETWORK.doc